Skip to main content
Log in

Efficient Generation of Recombinant Adenoviral Vectors by Cre-lox Recombination In Vitro

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Although recombinant adenovirus vectors are attractive for use in gene expression studies and therapeutic applications, the construction of these vectors remains relatively time-consuming. We report here a strategy that simplifies the production of adenoviruses using the Cre-loxP system.

Materials and Methods

Full-length recombinant adenovirus DNA was generated in vitro by Cre-mediated recombination between loxP sites in a linearized shuttle plasmid containing a transgene and adenovirus genomic DNA.

Results

After transfection of Cre-treated DNA into 293 cells, replication-defective viral vectors were rapidly obtained without detectable wild-type virus.

Conclusion

This system facilitates the development of recombinant adenoviral vectors for basic and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ballay A, Levrero M, Buendia M, Tiollais P, Perricaudet M. (1985) In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses. EMBO J. 4: 3861–3865.

    Article  CAS  Google Scholar 

  2. Gilardi P, Courtney M, Pavirani A, Perricaudet M. (1990) Expression of human α1-antitrypsin using a recombinant adenovirus vector. FEBS Lett. 267: 60–62.

    Article  CAS  Google Scholar 

  3. Rosenfeld MA, Siegfried W, Yoshimura K, et al. (1991) Adenovirus-mediated transfer of a recombinant α1-antitrypsin gene to the lung epithelium in vivo. Science 252: 431–434.

    Article  CAS  Google Scholar 

  4. McGrory WJ, Bautista DS, Graham FL. (1988) A simple technique for the rescue of early region 1 mutations into infectous human adenovirus type 5. Virology 163: 614–617.

    Article  CAS  Google Scholar 

  5. Stratford-Perricaudet L, Makeh I, Perricaudet M, Briand P. (1992) Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90: 626–630.

    Article  CAS  Google Scholar 

  6. Chinnadurai G, Chinnadurai S, Brusca J. (1979) Physical mapping of a large-plaque mutation of adenovirus type 2. J. Virol. 32: 623–628.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Abremski K, Hoess R, Sternberg N. (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32: 1301–1311.

    Article  CAS  Google Scholar 

  8. Adams DE, Bliska JB, Cozzarelli NR. (1992) Crelox recombination in Escherichia coli cells. Mol. Biol. 226: 661–673.

    Article  CAS  Google Scholar 

  9. Anton M, Graham FL. (1995) Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J. Virol. 69: 4600–4606.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Baubonis W, Sauer B. (1993) Genomic targeting with purified Cre recombinase. Nucl. Acids Res. 21: 2025–2029.

    Article  CAS  Google Scholar 

  11. Fukushige S, Sauer B. (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 89: 7905–7909.

    Article  CAS  Google Scholar 

  12. Gu H, Zou Y, Rajewsky K. (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through cre-loxP-mediated gene targeting. Cell 73: 1155–1164.

    Article  CAS  Google Scholar 

  13. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265: 103–106.

    Article  CAS  Google Scholar 

  14. Russell SJ. (1994) Replicating vectors for gene therapy of cancer: risks, limitations, and prospects. Eur. J. Cancer 30A: 1165–1171.

    Article  CAS  Google Scholar 

  15. Hoess RH, Abremski K. (1984) Interaction of the bacteriophage p1 recombinase cre with the recombining site loxP. Proc. Natl. Acad. Sci. U.S.A. 81: 1026–1029.

    Article  CAS  Google Scholar 

  16. Hoess RH, Abremski K. (1985) Mechanism of strand cleavage and exchange in the cre-lox site-specific recombination system. J. Mol. Biol. 181: 351–362.

    Article  CAS  Google Scholar 

  17. Hoess RH, Ziese M, Sternberg N. (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. U.S.A. 79: 3398–3402.

    Article  CAS  Google Scholar 

  18. Kilby N, Snaith M, Murray JAH. (1993) Site-specific recombinases: tools for genome engineering. Trends Genet. 9: 413–421.

    Article  CAS  Google Scholar 

  19. Simpson P. (1993) Flipping fruit-flies: a powerful new technique for generating Drosophila mosaics. Trends Genet. 9: 227–228.

    Article  CAS  Google Scholar 

  20. Davidson BL, Allen ED, Kozarsky KF, Wilson JM, Roessler BJ. (1993) A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat. Genet. 3: 219–223.

    Article  CAS  Google Scholar 

  21. Hanahan D. (1983) Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 577–580.

    Article  Google Scholar 

  22. Sharp PA, Moore C, Haverty J. (1976) The infectivity of adenovirus 5 DNA-protein complex. Virology 75: 442–456.

    Article  CAS  Google Scholar 

  23. Ketner G, Spencer F, Tugendreich S, Connelly C, Hieter P. (1994) Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone. Proc. Natl. Acad. Sci. U.S.A. 91: 6186–6190.

    Article  CAS  Google Scholar 

  24. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M. (1996) Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol. 70: 4805–4810.

    PubMed  CAS  Google Scholar 

  25. Crouzet J, Naudin L, Orsini C, et al. (1997) Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc. Natl. Acad. Sci. U.S.A. 94: 1414–1419.

    Article  CAS  Google Scholar 

  26. He T-C, Zhou S, Da Costa LT, Yu J, Kinzler KW, Vogelstein B. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. U.S.A. 95: 2509–2514.

    Article  CAS  Google Scholar 

  27. Fu S, Deisseroth AB. (1997) Use of the cosmid adenoviral vector cloning system for the in vitro construction of recombinant adenoviral vectors. Hum. Gene Ther. 8: 1321–1330.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Donna Gschwend for secretarial assistance, Ms. Nancy Barrett for preparation of figures, and Ms. Kay Cherian for her helpful advice and comments. This work was supported in part by a grant from the National Institutes of Health (GM34902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Nabel.

Additional information

Communicated by E. Nabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, K., Barker, C., Danthinne, X. et al. Efficient Generation of Recombinant Adenoviral Vectors by Cre-lox Recombination In Vitro. Mol Med 5, 224–231 (1999). https://doi.org/10.1007/BF03402119

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402119

Keywords

Navigation