Skip to main content
Log in

Inflammatory Mediators Regulate Cathepsin S in Macrophages and Microglia: A Role in Attenuating Heparan Sulfate Interactions

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Cathepsin S is a member of the family of cysteine lysosomal proteases. The distribution of cathepsin S is restricted to cells from the mononuclear lineage both in the brain and in the periphery. Also, its protease activity is uniquely stable at neutral pH.

Materials and Methods

We compared the expression of cathepsin S, B, and L mRNAs in various undifferentiated and differentiated cells of mononuclear origin, and examined the modulation of these mRNAs by inflammatory mediators (lipopolysaccharide and various cytokines). In addition, the effect of these agents on cathepsin S protein levels and protease activity was also determined. Lastly, the ability of cathepsin S to process basement membrane components such as heparan sulfate proteoglycans in vitro and in vivo was assessed.

Results

Cathepsin S, B, and L mRNAs are expressed in mature macrophages and microglial cells and not in undifferentiated monocytes. Activators of macrophages negatively regulate all three transcripts. Consistent with this, treatment with these agents leads to a decrease in intracellular cathepsin S protein levels and activity. However, the same treatments result in stimulation of secreted cathepsin S activity. Cathepsin S is capable of degrading heparan sulfate proteoglycans in vitro. Also, when expressed in endothelial cells, cathepsin S autocrinely attenuates the basic fibroblast growth factor (bFGF)-mediated binding of FGF receptor containing cells to endothelial cells, by acting on basement membrane proteoglycans.

Conclusions

Taken together, these data imply that cathepsin S is a regulatable cysteine protease that plays a role in the degradation of extracellular proteins, whose secretion from macrophages and microglia is increased by signals that lead to activation of these cells, and may be important in regulating extracellular matrix interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Perry VH, Gordon S. (1991) Macrophages and the nervous system. Int. Rev. Cytol. 125: 203–244.

    Article  CAS  PubMed  Google Scholar 

  2. Adams DO, Hamilton TA. (1984) The cell biology of macrophage activation Annu. Rev. Immunol. 2: 283–318.

    Article  CAS  PubMed  Google Scholar 

  3. Page RC, Davies P, Allison AC. (1978) The macrophage as a secretory cell Int. Rev. Cytol. 52: 119–157.

    Article  CAS  PubMed  Google Scholar 

  4. Nathan CF. (1987) Secretory products of macrophages. J. Clin. Invest. 79: 319–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gelb BD, Shi GP, Heller M, et al. (1997) Structure and chromosomal assignment of the human cathepsin K gene. Genomics 41: 258–262.

    Article  CAS  PubMed  Google Scholar 

  6. Kirschke H. (1994) Cathepsin S and related lysosomal endopeptidases. Methods Enzymol. 244: 500–511.

    Article  CAS  PubMed  Google Scholar 

  7. Bromme D, Okamoto K, Wang BB, Biroc S. (1996) Human cathepsin 02, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin 02 in Spodoptera frugiperda and characterization of the enzyme. J. Biol. Chem. 271: 2126–2132.

    Article  CAS  PubMed  Google Scholar 

  8. Bromme D, Steinert A, Friebe S, Fittkau S, Wiederanders B, Kirschke H. (1989) The specificity of bovine spleen cathepsin S. A comparison with rat liver cathepsins L and B. Biochem. J. 264: 475–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirschke H, Wiederanders B, Bromme D, Rinne A. (1989) Cathepsin S from bovine spleen. Purification distribution intracellular localization and action on proteins. Biochem. J. 264: 467–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maciewicz RA, Etherington DJ. (1988) A comparison of four cathepsins (B, L, N and S) with collagenolytic activity from rabbit spleen. Biochem. J. 256: 433–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petanceska S, Canoll P, Devi LA. (1996) Expression of rat cathepsin S in phagocytic cells. J. Biol. Chem. 271: 4403–4409.

    Article  CAS  PubMed  Google Scholar 

  12. Shi G-P, Munger JS, Meara JP, Rich DH, Chapman HA. (1992) Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J. Biol. Chem. 267: 7258–7262.

    PubMed  CAS  Google Scholar 

  13. Shi G-P, Webb AC, Foster KE, et al. (1994) Human cathepsin S: chromosomal localization, gene structure, and tissue distribution. J. Biol. Chem. 269: 11530–11536.

    PubMed  CAS  Google Scholar 

  14. Basilico C, Moscatelli D. (1992) The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59: 115–165.

    Article  CAS  PubMed  Google Scholar 

  15. Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A. (1994) Perlecan basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79: 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  16. Schlessinger J, Lax I, Lemmon M. (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83: 357–360.

    Article  CAS  PubMed  Google Scholar 

  17. Liuzzo JP, Moscatelli D. (1996) Human leukemia cell lines bind basic fibroblast growth factor (FGF) on FGF receptors and heparan sulfates: down-modulation of FGF receptors by phorbol ester. Blood 87: 245–255.

    PubMed  CAS  Google Scholar 

  18. Richard C, Liuzzo JP, Moscatelli D. (1995) Fibroblast growth factor-2 can mediate cell attachment by linking receptors and heparan sulfate proteoglycans on neighboring cells. J. Biol. Chem. 270: 24188–24196.

    Article  CAS  PubMed  Google Scholar 

  19. Roghani M, Mansukhani A, Dell’Era P, et al. (1994) Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J. Biol. Chem. 269: 3976–3984.

    PubMed  CAS  Google Scholar 

  20. Petanceska S, Burke S, Watson SJ, Devi LA. (1994) Differential distribution of messenger RNAs for cathepsins B, L and S in adult rat brain: an in situ hybridization study. Neuroscience 59: 729–730.

    Article  CAS  PubMed  Google Scholar 

  21. Petanceska S, Devi L. (1992) Sequence analysis, tissue distribution, and expression of rat cathepsin S. J. Biol. Chem. 267: 26038–26043.

    PubMed  CAS  Google Scholar 

  22. Reddy VY, Zhang Q-Y, Weiss SJ. (1995) Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc. Natl. Acad. Sci. U.S.A. 92: 3849–3853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reilly JJ, Mason RW, Chen P, Joseph LJ, Sukhatme VP, Yee R. (1989) Synthesis and processing of cathepsin L, an elastase, by human alveolar macrophages. Biochem. J. 257: 493–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reilly JJ, Chen P, Sailor LZ, Mason RW, Chapman HA. (1990) Uptake of extracellular enzyme by a novel pathway is a major determinant of cathepsin L levels in human macrophages. J. Clin. Invest. 86: 176–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Q, Ding L, Bever CT. (1998) Interferon-c induces cathepsin B expression in a human macrophage-like cell line by increasing both transcription and mRNA stability. Int. J. Mol. Med. 2: 181–186.

    PubMed  CAS  Google Scholar 

  26. Schubert D, Schroeder R, LaCorbiere M, Saitoh T, Cole G. (1988) Amyloid beta protein precursor is possibly a heparan sulfate proteoglycan core protein. Science 241: 223–226.

    Article  CAS  PubMed  Google Scholar 

  27. Shioi J, Anderson JP, Ripellino JA, Robakis NK. (1992) Chondroitin sulfate proteoglycan form of the Alzheimer’s beta-amyloid precursor. J. Biol. Chem. 267: 13819–13822.

    PubMed  CAS  Google Scholar 

  28. Brunner G, Gabrilove J, Rifkin DB, Wilson EL. (1991) Phospholipase C release of basic fibroblast growth factor from human bone marrow cultures as a biologically active complex with a phosphatidylinositol-anchored heparan sulfate proteoglycan. J. Cell. Biol. 114: 1275–1283.

    Article  CAS  PubMed  Google Scholar 

  29. Saksela O, Moscatelli D, Sommer A, Rifkin DB. (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 107: 743–751.

    Article  CAS  PubMed  Google Scholar 

  30. Recklies AD, Mort JS, Poole AR. (1982) Secretion of a thiol proteinase from mouse mammary carcinomas and its characterization. Cancer Res. 42: 1026–1032.

    PubMed  CAS  Google Scholar 

  31. Morland B, Pedersen A. (1979) Cathepsin B activity in stimulated mouse peritoneal macrophages. Lab. Invest. 41: 379–384.

    PubMed  CAS  Google Scholar 

  32. Portnoy DA, Erickson AH, Kochan J, Ravetch JV, Unkeless JC. (1986) Cloning and characterization of a mouse cysteine proteinase. J. Biol. Chem. 261: 14697–14703.

    PubMed  CAS  Google Scholar 

  33. Giulian D, Corpuz M. (1993) Microglial secretion products and their impact on the nervous system. Adv. Neurol. 59: 315–320.

    PubMed  CAS  Google Scholar 

  34. Mason RW, Wilcox D. (1993) Chemistry of lysosomal cysteine proteinases. Adv. Cell Mol. Biol. Memb. 1: 81–116.

    Google Scholar 

  35. Morrison RIG, Barrett AJ, Dingle JT, Prior D. (1973) Cathepsins BI and D. Action on human cartilage proteoglycans. Biochim. Biophys. Acta 302: 411–419.

    Article  CAS  PubMed  Google Scholar 

  36. Isemura M, Yosizawa Z, Takahashi K, Kosaka H, Kojima N, Ono T. (1981) Characterization of porcine plasma fibronectin and its fragmentation by porcine liver cathepsin B. J. Biochem. 90: 1–9.

    Article  CAS  PubMed  Google Scholar 

  37. Burleigh MC, Barrett AJ, Lazarus GS. (1974) Cathepsin B1. A lysosomal enzyme that degrades native collagen. Biochem. J. 137: 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF. (1992) Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem. J. 282: 273–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gal S, Gottesman MM. (1986) The major excreted protein of transformed fibroblasts is an activable acid-protease. J. Biol. Chem. 261: 1760–1765.

    PubMed  CAS  Google Scholar 

  40. Kirschke H, Kembhavi AA, Bohley P, Barrett AJ. (1982) Action of rat liver cathepsin L on collagen and other substrates. Biochem. J. 201: 367–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mason RW, Johnson DA, Barrett AJ, Chapman HA. (1986) Elastinolytic activity of human cathepsin L. Biochem. J. 233: 925–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liotta LA. (1986) Tumor invasion and metastases—role of the extracellular matrix. Cancer Res. 46: 1–7.

    Article  CAS  PubMed  Google Scholar 

  43. Sloane BF. (1990) Cathepsin B and cystatins: evidence for a role in cancer progression. Semin. Cancer Biol. 1: 137–152.

    PubMed  CAS  Google Scholar 

  44. Mason RW, Wilcox D, Wikstrom P, Shaw EN. (1989) The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabeled inhibitor. Biochem. J. 257: 125–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Warfel AH, Zucker-Franklin D, Frangione B, Ghiso J. (1987) Constitutive secretion of cystatin C (gamma-trace) by monocytes and macrophages and its down-regulation after stimulation. J. Exp. Med. 166: 1912–1917.

    Article  CAS  PubMed  Google Scholar 

  46. Perry VH, Andersson P-B, Gordon S. (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci. 16: 268–273.

    Article  CAS  PubMed  Google Scholar 

  47. Rappolee DA, Werb Z. (1992) Macrophage-derived growth factors. Curr. Top. Microbiol. Immunol. 181: 87–140.

    PubMed  CAS  Google Scholar 

  48. Broudy VC, Kaushansky K, Harlan JM, Adamson JW. (1987) Interleukin 1 stimulates human endothelial cells to produce granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor. J. Immunol. 139: 464–468.

    PubMed  CAS  Google Scholar 

  49. Broudy VC, Kaushansky K, Segal GM, Harlan JM, Adamson JW. (1986) Tumor necrosis factor type alpha stimulates human endothelial cells to produce granulocyte/macrophage colony-stimulating factor. Proc. Natl. Acad. Sci. U.S.A. 83: 7467–7471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Munker R, Gasson J, Ogawa M, Koeffler HP. (1986) Recombinant human TNF induces production of granulocyte-monocyte colony-stimulating factor. Nature 323: 79–82.

    Article  CAS  PubMed  Google Scholar 

  51. Heremans A, De Cock B, Cassiman JJ, Van den Berghe H, David G. (1990) The core protein of the matrix-associated heparan sulfate proteoglycan binds to fibronectin. J. Biol. Chem. 265: 8716–8724.

    PubMed  CAS  Google Scholar 

  52. Clement B, Yamada Y. (1990) A Mr 80K hepatocyte surface protein(s) interacts with basement membrane components. Exp. Cell Res. 187: 320–323.

    Article  CAS  PubMed  Google Scholar 

  53. Singer II, Scott S, Kawka DW, Hassell JR. (1987) Extracellular matrix fibers containing fibronectin and basement membrane heparan sulfate proteoglycan coalign with focal contacts and microfilament bundles in stationary fibroblasts. Exp. Cell Res. 173: 558–571.

    Article  CAS  PubMed  Google Scholar 

  54. Rapraeger AC, Ott VL. (1998) Molecular interactions of the syndecan core proteins. Curr. Opin. Cell Biol. 10: 620–628.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institute of Health grants NS 26880 and NS K04 1788 (to L. A. D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi A. Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liuzzo, J.P., Petanceska, S.S., Moscatelli, D. et al. Inflammatory Mediators Regulate Cathepsin S in Macrophages and Microglia: A Role in Attenuating Heparan Sulfate Interactions. Mol Med 5, 320–333 (1999). https://doi.org/10.1007/BF03402068

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402068

Keywords

Navigation