Skip to main content
Log in

An Essential Role for Macrophage Migration Inhibitory Factor (MIF) in Angiogenesis and the Growth of a Murine Lymphoma

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Macrophage migration inhibitory factor (MIF) has been shown to counterregulate glucocorticoid action and to play an essential role in the activation of macrophages and T cells in vivo. MIF also may function as an autocrine growth factor in certain cell systems. We have explored the role of MIF in the growth of the 38C13 B cell lymphoma in C3H/HeN mice, a well-characterized syngeneic model for the study of solid tumor biology.

Materials and Methods

Tumor-bearing mice were treated with a neutralizing anti-MIF monoclonal antibody and the tumor response assessed grossly and histologically. Tumor capillaries were enumerated by immunohistochemistry and analyzed for MIF expression. The effect of MIF on endothelial cell proliferation was studied in vitro, utilizing both specific antibody and antisense oligonucleotide constructs. The role of MIF in angiogenesis also was examined in a standard Matrigel model of new blood vessel formation in vivo.

Results

The administration of anti-MIF monoclonal antibodies to mice was found to reduce significantly the growth and the vascularization of the 38C13 B cell lymphoma. By immunohistochemistry, MIF was expressed predominantly within the tumor-associated neovasculature. Cultured microvascular endothelial cells, but not 38C13 B cells, produced MIF protein and required its activity for proliferation in vitro. Anti-MIF monoclonal antibody also was found to markedly inhibit the neovascularization response elicited by Matrigel implantation.

Conclusion

These data significantly expand the role of MIF in host responses, and suggest a new target for the development of anti-neoplastic agents that inhibit tumor neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nicholson GL. (1987) Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res. 47: 1473–1487.

    Google Scholar 

  2. Folkman J. (1986) How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 46: 467–473.

    PubMed  CAS  Google Scholar 

  3. Muul LM, Spiess PJ, EP Director, Rosenberg SA. (1987) Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J. Immunol. 138: 989–995.

    PubMed  CAS  Google Scholar 

  4. Pugh-Humphreys RGP, Woo J, Thomson AW. (1991) Cytokines and their receptors as potential therapeutic targets. In: The Cytokine Handbook. Academic Press, New York, pp. 357–386.

    Google Scholar 

  5. Lang RA, Burgess AW. (1990) Autocrine growth factors and tumourigenic transformation. Immunol Today 11: 244–249.

    Article  CAS  PubMed  Google Scholar 

  6. Barnard JA, Lyons RM, Moses HL. (1990) The cell biology of transforming growth factor beta. Biochim. Biophys. Acta 1032: 79–87.

    PubMed  CAS  Google Scholar 

  7. Roberts AB, Thompson NL, Heine U, Flanders C, Sporn MB. (1988) TGF-beta: possible roles in carcinogenesis. Br. J. Cancer 57: 594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MK, Strieter RM. (1996) Inhibition of IL-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J. Clin. Invest. 97: 2792–2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. David JR. (1996) Delayed hypersensitivity in vitro: its mediation by cell free substances formed by lymphoid cell-antigen interaction. Proc. Natl. Acad. Sei. U.S.A. 56: 72–77.

    Article  Google Scholar 

  10. Bloom BR, Bennet B. (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153: 80–82.

    Article  CAS  PubMed  Google Scholar 

  11. Bacher MB, Metz CN, Calandra T, et al. (1996) An essential role for macrophage migration inhibitory factor in T-cell activation. Proc. Natl. Acad. Sci. U.S.A. 93: 7849–7854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calandra T, Bernhagen J, Mitchell RA, Bucala R. (1994) The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J. Exp. Med. 179: 895–1902.

    Article  Google Scholar 

  13. Calandra T, Bernhagen J, Metz CN, et al. (1995) MIF as a glucocorticoid-induced counter-regulator of cytokine production. Nature 377: 68–71.

    Article  CAS  PubMed  Google Scholar 

  14. Bernhagen J, Calandra T, Mitchell RA, et al. (1993) MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 365: 756–759.

    Article  CAS  PubMed  Google Scholar 

  15. Bernhagen J, Bacher M, Calandra T, et al. (1996) An essential role for MIF in the tuberculin delayed-type hypersensitivity reaction. J. Exp. Med. 183: 277–282.

    Article  CAS  PubMed  Google Scholar 

  16. Calandra T, Spiegel LA, Metz CN, Bucala R (1998) Macrophage migration inhibitory factor (MIF) is a critical mediator of the activation of immune cells by exotoxins of gram-positive bacteria. Proc. Natl. Acad. Sci. U.S.A. 95: 11383–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kemp JD, Cardillo T, Stewart BC, et al. (1995) Inhibition of lymphoma growth in vivo by combined treatment with hydroxyethyl starch deferoxamine conjugate IgG monoclonal antibodies against the transferrin receptor. Cancer Res. 55: 3817–3824.

    PubMed  CAS  Google Scholar 

  18. Taetle R, Rosen F, Abramson I, Venditti J, Howell S. (1987) Use of nude mouse xenografts as preclinical drug screens: in vivo activity of established chemotherapeutic agents against melanoma and ovarian carcinoma xenografts. Cancer Treatment Rep. 71: 297–304.

    CAS  Google Scholar 

  19. Zar JH. (1984) Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  20. Waeber G, Calandra T, Roduit R, et al. (1997) Insulin secretion is regulated by the glucose-dependent production of islet β-cell macrophage migration inhibitory factor (MIF). Proc. Natl. Acad. Sei. U.S.A. 94: 4782–4787.

    Article  CAS  Google Scholar 

  21. Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R. (1994) Purification, bioactivity, and secondary structure analysis of mouse and human MIF. Biochemistry 33: 14144–14155.

    Article  CAS  PubMed  Google Scholar 

  22. Passanti A, Taylor RM, Pili R, et al. (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor Lab. Invest. 67: 519–528.

    Google Scholar 

  23. Bergman Y, Haimovich J. (1977) Characterization of a carcinogen-induced murine B lymphocyte cell of C3H/eB origin. Eur. J. Immunol. 7:413–417.

    Article  CAS  PubMed  Google Scholar 

  24. Campbell MJ, Esserman L, Levy R. (1988) Immunotherapy of established murine B cell lymphoma. Combination of idiotype immunization and cyclophosphamide. J. Immunol. 141: 3227–3233.

    PubMed  CAS  Google Scholar 

  25. Basham TY, Palladin MA, Badger CC, Bernstein ID, Levy R, Merigan TC. (1988) Comparison of combinations of interferons with tumor specific and nonspecific monoclonal antibodies as therapy for murine B cell and T cell lymphomas. Cancer Res. 48: 4196–4200.

    PubMed  CAS  Google Scholar 

  26. Kaminski MS, Kitamura K, Maloney DG, Levy R. (1987) Idiotype vaccination against murine B cell lymphoma. Inhibition of tumor immunity by free idiotype protein. J. Immunol. 138: 1289–1296.

    PubMed  CAS  Google Scholar 

  27. Folkman J, Cotran R. (1976) Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16: 207–248.

    PubMed  CAS  Google Scholar 

  28. Gimbrone MA, Leapman SB, Cotran R, Folkman J. (1972) Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136: 261–276.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Folkman JK, Watson D, Ingber D, Hanahan J. (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61.

    Article  CAS  PubMed  Google Scholar 

  30. Vecchi AC, Garlanda C, Lampugnani MG, et al. (1994) Monoclonal antibodies specific for endothelial cells of mouse blood vessels. Their application in the identification of adult and embryonic endothelium. Eur. J. Cell Biol. 63: 247–254.

    PubMed  CAS  Google Scholar 

  31. Xie Y, Muller WA. (1993) Molecular cloning and adhesive properties of murine platelet/endothelial adhesion molecule-1. Proc. Natl. Acad. Sci. U.S.A. 90: 5569–5573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeLisser HM, Newman PJ, Albeda SM. (1993) Platelet endothelial cell adhesion molecule (CD31). Curr. Top. Microbiol. Immunol. 184: 37–45.

    PubMed  CAS  Google Scholar 

  33. Buck CA, Baldwin HS, DeLisser H, et al. (1993) Cell adhesion receptors and early mammalian heart development—an overview. C R Acad. Sci. III 316: 849–859.

    Google Scholar 

  34. Bacher MB, Meinhardt A, Lan HY, et al. (1997) Migration inhibitory factor expression in experimentally induced endotoxemia. Am. J. Pathol. 150: 235–246.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Whalen GF, Zetter BR. (1992) Angiogenesis. In: Wound Healing, W. B. Saunders, Philadelphia, pp. 77–95.

    Google Scholar 

  36. Folkman J, D’Amore PA. (1996) Blood vessel formation: what is its molecular basis? Cell 87: 1153–1155.

    Article  CAS  PubMed  Google Scholar 

  37. Fiorentino MV. (1991) Lymphomas in the elderly. Leukemia 5: 79–85.

    PubMed  Google Scholar 

  38. Goss PE. (1992) New perspectives in the treatment of non-Hodgkin’s lymphoma. Semin. Oncol. 19: 23–29.

    PubMed  CAS  Google Scholar 

  39. Zackheim HS. (1994) Treatment of cutaneous T-cell lymphoma. Semin. Dermatol. 13: 207–215.

    PubMed  CAS  Google Scholar 

  40. Sun HW, Bernhagen J, Bucala R, Lolis E. (1996) Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. Proc. Natl. Acad. Sei. U.S.A. 93: 5191–5196.

    Article  CAS  Google Scholar 

  41. Rosengren E, Bucala R, Aman P, et al. (1996) The immunoregulatory mediator MIF catalyzes a tau-tomerization reaction. Mol. Med. 2: 143–149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (AI42310-01A1) and the Arthritis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bucala.

Additional information

Communicated by R. Bucala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesney, J., Metz, C., Bacher, M. et al. An Essential Role for Macrophage Migration Inhibitory Factor (MIF) in Angiogenesis and the Growth of a Murine Lymphoma. Mol Med 5, 181–191 (1999). https://doi.org/10.1007/BF03402061

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402061

Keywords

Navigation