Skip to main content
Log in

Expression of the Proteinase Specialized in Bone Resorption, Cathepsin K, in Granulomatous Inflammation

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The cysteine proteinase cathepsin K has aroused intense interest as the main effector in the digestion of extracellular matrix during bone resorption by osteoclasts. The enzyme is not a housekeeping lysosomal hydrolase, but is instead expressed with striking specificity in osteoclasts. In this work, we present evidence for the association of cathepsin K with the granulomatous reaction. Granulomas are inflammatory tissue reactions against persistent pathogens or foreign bodies. We came across cathepsin K while working on Echinococcus granulosus, a persistent tissue-dwelling, cyst-forming parasite that elicits a granulomatous response.

Materials and Methods

The walls of hydatid cysts from infected cattle were solubilized. Strong proteolytic activity was detected in the extracts. The proteinase responsible was purified by anion exchange and gel filtration. The purified protein was subjected to N-terminal sequencing, and its identity further confirmed by Western blotting, with a cathepsin K-specific antibody. The same antibody was used to localize the proteinase in paraffin-embedded sections of the parasite and the local host response.

Results

A proteinase was purified to near homogeneity from hydatid cyst extracts. The enzyme was unequivocally identified as host cathepsin K. Both the proenzyme and the mature enzyme forms were found. Cathepsin K was then immunolocalized both to the parasite cyst wall and to the epithelioid and giant multinucleated cells of the host granulomatous response.

Conclusions

In the granulomatous response to the hydatid cyst, cathepsin K is expressed by epithelioid and giant multinucleated cells. We propose that, by analogy with bone resorption, cathepsin K is secreted by the host in an attempt to digest the persistent foreign body. Both processes, bone resorption and granulomatous reactions, therefore tackle persistent extracellular material (the bone matrix or the foreign body), and utilize specialized cells of the monocytic lineage (osteoclasts or epithelioid/giant cells) secreting cathepsin K as an effector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tezuka K, Tezuka Y, Maejima A, et al. (1994) Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J. Biol. Chem. 269: 1106–1109.

    PubMed  CAS  Google Scholar 

  2. Inaoka T, Bilbe G, Tezuka K-I, Kumegawa M, Kokubo T. (1995) Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem. Biophys. Res. Commun. 206: 89–96.

    Article  CAS  PubMed  Google Scholar 

  3. Brömme D, Okamoto K. (1995) Human cathepsin O2, a novel cysteine proteinase highly expressed in osteoclastomas and ovary. Molecular cloning, sequencing and tissue distribution. Biol. Chem. Hoppe-Seyler 376: 379–384.

    Article  PubMed  Google Scholar 

  4. Rantakokko J, Aro HT, Savontaus M, Vuorio E. (1996) Mouse cathepsin K: cDNA cloning and predominant expression of the gene in osteoclasts, and in some hypertrophying chondrocytes during mouse development. FEBS Lett. 393: 307–313.

    Article  CAS  PubMed  Google Scholar 

  5. Drake FH, Dodds RA, James IE, et al. (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 271: 12511–12516.

    Article  CAS  PubMed  Google Scholar 

  6. Littlewood-Evans A, Kokubo T, Ishibashi O, et al. (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20: 81–86.

    Article  CAS  PubMed  Google Scholar 

  7. Yamaza T, Goto T, Kamiya T, Kobayashi Y, Sakai H, Tanaka T. (1998) Study of immunoelectron microscopy localization of cathepsin K in osteoclasts and other bone cells in the mouse femur. Bone 23: 499–509.

    Article  CAS  PubMed  Google Scholar 

  8. Inui T, Ishibashi O, Inaoka T, et al. (1997) Cathepsin K antisense oligodeoxynucleotide inhibits osteoclastic bone resorption. J. Biol. Chem. 272: 8109–8112.

    Article  CAS  PubMed  Google Scholar 

  9. Votta BJ, Levy MA, Badger A, et al. (1997) Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J. Bone Miner. Res. 12: 1396–1406.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson SK, Halbert SM, Bossard MJ, et al. (1997) Design of potent and selective human cathepsin K inhibitors that span the active site. Proc. Natl. Acad. Sci. U.S.A. 94: 14249–14254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gelb BD, Shi G-P, Chapman HA, Desnick RJ. (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273: 1236–1238.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson MR, Polymeropoulos MH, Vos HL, Isela Ortiz De Luna R, Francomano CA. (1996) A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res. 6: 1051–1055.

    Article  Google Scholar 

  13. Saftig P, Hunzinker E, Whemeyer O, et al. (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin K-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 95: 13453–13458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams GT, Williams WJ. (1983) Granulomatous inflammation—a review. J. Clin. Pathol. 36: 723–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Epstein WL, Fukuyama K. (1989) Mechanisms of granulomatous inflammation. Immunol. Series 46: 687–721.

    CAS  Google Scholar 

  16. Turk JL. (1989) Current status review: a comparison of secretory epithelioid cells and phagocytosing macrophages in experimental mycobacterial granulomas. Br. J. Exp. Pathol. 70: 589–596.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Soler P, Bernaudin J-F. (1993) Physiologie des granulomes. Revue de Pneumologie Clinique 49: 257–261.

    PubMed  CAS  Google Scholar 

  18. Robinson BWS. (1996) Sarcoidosis. In: Kradlin RL, Robison BWS (eds.) Immunopathology of Lung Disease. Butterworth-Heinemann, Boston, pp. 165–190.

    Google Scholar 

  19. Vermeulen MW, Fenton MJ. (1996) Immunopathology of tuberculosis. In: Kradlin RL, Robison BWS (eds.) Immunopathology of Lung Disease. Butterworth-Heinemann, Boston, pp. 231–266.

    Google Scholar 

  20. Thompson RCA. (1995) Biology and systematics of Echinococcus. In: Thompson RCA, Lymbery AJ. (eds.) Echinococcus and Hydatid Disease. CAB International, Wallingford, U.K., pp. 1–50.

    Google Scholar 

  21. Nieberle P, Cohrs P. (1967) Textbook of the Special Pathological Anatomy of Domestic Animals. Pergamon, Oxford, U.K., pp. 280, 546.

    Google Scholar 

  22. Rao DG, Mohiyuddin S. (1974) Incidence of hydatid cyst in bovines and histopathological changes of pulmonary tissue in hydatidosis. Indian J. Anim. Sci. 44: 437–440.

    Google Scholar 

  23. Slais J, Vanek M. (1980) Tissue reaction to spherical and lobular hydatid cysts of Echinococcus granulosus (Batsch, 1786). Folia Parasitologica (Praha) 27: 135–143.

    CAS  Google Scholar 

  24. Díaz A, Ferreira AM, Sim RB. (1997). Complement evasion by Echinococcus granulosus sequestration of host factor H in the hydatid cyst wall. J. Immunol. 158: 3779–3786.

    PubMed  Google Scholar 

  25. Ho PL, Carpenter MR, Smillie LB, Gambarini AG. (1990) Co-purification of proteases with basic fibroblast growth factor (FGF). Biochem. Biophys. Res. Commun. 170: 769–774.

    Article  CAS  PubMed  Google Scholar 

  26. Shi GP, Chapman HA, Bhairi SM, Deleeuw C, Reddy VY, Weiss SJ. (1995) Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2. FEBS Lett. 357: 129–134.

    Article  CAS  PubMed  Google Scholar 

  27. Brömme D, Okamoto K, Wang B, Biroc S. (1996) Human cathepsin O2, a matrix-degrading cysteine protease expressed in osteoclasts. J. Biol. Chem. 271: 2126–2132.

    Article  PubMed  Google Scholar 

  28. Bossard M, Tomaszek, TA, Thompson SK, et al. (1996) Proteolytic activity of human osteoclast cathepsin K. J. Biol. Chem. 271: 12517–12524.

    Article  CAS  PubMed  Google Scholar 

  29. Linnevers CJ, McGrath ME, Armstrong R, et al. (1997) Expression of human cathepsin K in Pichia pastoris and preliminary crystallographic studies of an inhibitor complex. Protein Sci. 6: 919–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McQueney MS, Amegadzic BY, D’Alessio K, et al. (1997) Autocatalytic activation of human cathepsin K. J. Biol. Chem. 272: 13955–13960.

    Article  CAS  PubMed  Google Scholar 

  31. McQueney MS, Feild J, Hanning CR, et al. (1998) Cynomolgus monkey (Macacca fascicularis) cathepsin K: cloning, expression, purification and activation. Protein Expr. Purif. 14: 387–394.

    Article  CAS  PubMed  Google Scholar 

  32. McGrath ME, Klaus JL, Barnes MG, Brömme D. (1997) Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat. Struct. Biol. 4: 105–109.

    Article  CAS  PubMed  Google Scholar 

  33. Yamashita J, Ohbayashi M, Konno S. (1957) Studies on echinonococcosis V. Experimental infection of the sheep. Jpn. J. Vet. Res. 5: 43–50.

    Google Scholar 

  34. Thomas JA, Kothare SN. (1975) Tissue response in hydatidosis. Indian J. Med. Res. 63: 1761–1766.

    PubMed  CAS  Google Scholar 

  35. Smyth JD, Heath DD. (1970) Pathogenesis of larval cestodes in mammals. Helminthol. Abstr. 39: 1–22.

    Google Scholar 

  36. Hummel KM, Petrow PK, Franz JK, et al. (1998) Cysteine proteinase cathepsin K mRNA is expressed in synovium of patients with rheumatoid arthritis and is detected at sites of synovial bone destruction. J. Rheumatol. 25: 1887–1894.

    PubMed  CAS  Google Scholar 

  37. Dodds RA, Connor JR, Drake FH, Gowen M. 1999. Expression of cathepsin K messenger RNA in giant cells and their precursors in human osteoarthritic synovial tissues. Arthritis Rheum. 42: 1558–15593.

    Article  Google Scholar 

  38. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. (1998) Expression of the elastinolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102: 576–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chambers TJ. (1978) Multinucleated giant cells. J. Pathol. 126: 125–148.

    Article  CAS  PubMed  Google Scholar 

  40. Kadoya Y, al-Saffar N, Kobayashi A, Revell PA. (1994) The expression of osteoclast markers on foreign body giant cells. Bone Miner. 27: 85–96.

    Article  CAS  PubMed  Google Scholar 

  41. Pandey R, Quinn J, Joyner C, Murray DW, Triffit JT, Athanasou NA. (1996) Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells. Ann. Rheum. Dis. 55: 338–395.

    Article  Google Scholar 

  42. Holtrop ME, Cox KA, Glowacky J. (1982) Cells of the mononuclear phagocytic system resorb implanted bone matrix: a histological and ultrastructural study. Calcif. Tissue Int. 34: 488–494.

    Article  CAS  PubMed  Google Scholar 

  43. Garnero P, Borel O, Byrjalsen I, et al. (1998) The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J. Biol. Chem. 272: 32347–32352.

    Article  Google Scholar 

  44. Mostov K, Werb Z. (1997) Journey across the osteoclast. Science 276: 219–221.

    Article  CAS  PubMed  Google Scholar 

  45. Jean D, Hermann J, Rodrigues-Lima F, Barel M, Balbo M, Frade R. (1995) Identification on melanoma cells of p39, a cysteine proteinase that cleaves C3, the third component of complement: amino-acid-sequence identities with procathepsin L. Biochem. J. 312: 961–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. A. Punturieri and Dr. S. J. Weiss, of the Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A., for generously providing us with anticathepsin K antibodies and recombinant human cathepsin K.

We thank Jason Pope and Narinder Dass (Department of Pharmacology, University of Oxford, U.K.) for expert help with histochemical stains and with the photography of these, respectively.

We thank Hernán Carol and Silvia González (Cátedra de Inmunología, Facultad de Química, University of Uruguay) for providing us with processed E. granulosus cyst material used in immunohistochemistry.

We thank Miss B. Moffatt for expert technical assistance.

This work was funded by the European Commission’s Directorate General XII/B International Scientific Cooperation programme through a grant (CI1*-CT93-0307) for a joint research effort with the Cátedra de Inmunología, Facultad de Química, University of Uruguay. A.D. was additionally supported by scholarships from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICYT, Ministry of Education, Uruguay) and the Comisión Sectorial de Investigación Científica (CSIC, University of Uruguay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Díaz.

Additional information

Communicated by Alvaro Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, A., Willis, A.C. & Sim, R.B. Expression of the Proteinase Specialized in Bone Resorption, Cathepsin K, in Granulomatous Inflammation. Mol Med 6, 648–659 (2000). https://doi.org/10.1007/BF03402045

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402045

Keywords

Navigation