Skip to main content
Log in

Histone Acetylation Modifiers in the Pathogenesis of Malignant Disease

  • Review Article
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Chromatin structure is gaining increasing attention as a potential target in the treatment of cancer. Relaxation of the chromatin fiber facilitates transcription and is regulated by two competing enzymatic activities, histone acetyltransferases (HATs) and histone deacetylases (HDACs), which modify the acetylation state of histone proteins and other promoter-bound transcription factors. While HATs, which are frequently part of multisubunit coactivator complexes, lead to the relaxation of chromatin structure and transcriptional activation, HDACs tend to associate with multisubunit corepressor complexes, which result in chromatin condensation and transcriptional repression of specific target genes. HATs and HDACs are known to be involved both in the pathogenesis as well as in the suppression of cancer. Some of the genes encoding these enzymes have been shown to be rearranged in the context of chromosomal translocations in human acute leukemias and solid tumors, where fusions of regulatory and coding regions of a variety of transcription factor genes result in completely new gene products that may interfere with regulatory cascades controlling cell growth and differentiation. On the other hand, some histone acetylation-modifying enzymes have been located within chromosomal regions that are particularly prone to chromosomal breaks. In these cases gains and losses of chromosomal material may affect the availability of functionally active HATs and HDACs, which in turn disturbs the tightly controlled equilibrium of histone acetylation. We review herein the recent achievements, which further help to elucidate the biological role of histone acetylation modifying enzymes and their potential impact on our current understanding of the molecular changes involved in the development of solid tumors and leukemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luger K, Mader AW, Richmond RK, et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    Article  CAS  PubMed  Google Scholar 

  2. Loidl P. (1994) Histone acetylation: facts and questions. Chromosoma 103: 441–449.

    Article  PubMed  CAS  Google Scholar 

  3. Jeppesen P. (1997) Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis. Bioessays 19: 67–74.

    Article  PubMed  CAS  Google Scholar 

  4. Wade PA, Pruss D, Wolffe AP. (1997) Histone acetylation: chromatin in action. Trends Biochem. Sci. 22: 128–132.

    Article  PubMed  CAS  Google Scholar 

  5. Struhl K. (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12: 599–606.

    Article  PubMed  CAS  Google Scholar 

  6. Spencer VA, Davie JR. (1999) Role of covalent modifications of histones in regulating gene expression. Gene 240: 1–12.

    Article  PubMed  CAS  Google Scholar 

  7. Bradbury EM. (1992) Reversible histone modifications and the chromosome cell cycle. Bioessays 14: 9–16.

    Article  PubMed  CAS  Google Scholar 

  8. Barratt MJ, Hazzalin CA, Cano E, et al. (1994) Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl. Acad. Sci. U.S.A. 91: 4781–4785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Allfrey VG, Faulkner R, Mirsky AE. (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 51: 786–794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cameron EE, Bachman KE, Myohanen S, et al. (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21: 103–107.

    Article  CAS  PubMed  Google Scholar 

  11. Hebbes TR, Thorne AW, Crane-Robinson C. (1988) A direct link between core histone acetylation and transcriptionally active chromatin. Embo J. 7: 1395–1402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Grunstein M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352.

    Article  CAS  PubMed  Google Scholar 

  13. Braunstein M, Rose AB, Holmes SG, et al. (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7: 592–604.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson CA, O’Neill LP, Mitchell A, et al. (1998) Distinctive patterns of histone H4 acetylation are associated with defined sequence elements within both heterochromatic and euchromatic regions of the human genome. Nucleic Acids Res. 26: 994–1001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ng HH, Bird A. (1999) DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9: 158–163.

    Article  CAS  PubMed  Google Scholar 

  16. Nan X, Ng HH, Johnson CA, et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    Article  CAS  PubMed  Google Scholar 

  17. Jones PL, Veenstra GJ, Wade PA, et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19: 187–191.

    Article  CAS  PubMed  Google Scholar 

  18. Wong CW, Privalsky ML. (1998) Transcriptional repression by the SMRT-mSin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol. Cell. Biol. 18: 5500–5510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Brownell JE, Zhou J, Ranalli T, et al. (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.

    Article  CAS  PubMed  Google Scholar 

  20. Kouzarides T. (1999) Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9: 40–48.

    Article  PubMed  CAS  Google Scholar 

  21. Davie JR, Chadee DN. (1998) Regulation and regulatory parameters of histone modifications. J. Cell. Biochem. Suppl. 31: 203–213.

    Article  Google Scholar 

  22. Muscat GE, Burke LJ, Downes M. (1998) The corepressor N-CoR and its variants RIP13a and RIP13Delta1 directly interact with the basal transcription factors TFIIB, TAFII32 and TAFII70. Nucleic Acids Res. 26: 2899–2907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Boyes J, Byfield P, Nakatani Y, et al. (1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396: 594–598.

    Article  PubMed  CAS  Google Scholar 

  24. Minucci S, Pelicci PG. (1999) Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin. Cell Dev. Biol. 10: 215–225.

    Article  PubMed  CAS  Google Scholar 

  25. Behre G, Zhang P, Zhang DE, et al. (1999) Analysis of the modulation of transcriptional activity in myelopoiesis and leukemogenesis. Methods 17: 231–237.

    Article  PubMed  CAS  Google Scholar 

  26. Fenrick R, Hiebert SW. (1998) Role of histone deacetylases in acute leukemia. J. Cell. Biochem. Suppl. 31: 194–202.

    Article  Google Scholar 

  27. Magnaghi-Jaulin L, Ait-Si-Ali S, Harel-Bellan A. (1999) Histone acetylation in signal transduction by growth regulatory signals. Semin. Cell Dev. Biol. 10: 197–203.

    Article  CAS  PubMed  Google Scholar 

  28. Rundlett SE, Carmen AA, Kobayashi R, et al. (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. U.S.A. 93: 14503–14508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kleff S, Andrulis ED, Anderson CW, et al. (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270: 24674–24677.

    Article  CAS  PubMed  Google Scholar 

  30. Parthun MR, Widom J, Gottschling DE. (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87: 85–94.

    Article  PubMed  CAS  Google Scholar 

  31. Chang L, Loranger SS, Mizzen C, et al. (1997) Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36: 469–480.

    Article  PubMed  CAS  Google Scholar 

  32. Kuo MH, Brownell JE, Sobel RE, et al. (1996) Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383: 269–272.

    Article  PubMed  CAS  Google Scholar 

  33. Grant PA, Duggan L, Cote J, et al. (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11: 1640–1650.

    Article  PubMed  CAS  Google Scholar 

  34. Eberharter A, Sterner DE, Schieltz D, et al. (1999) The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol. Cell. Biol. 19: 6621–6631.

    Article  PubMed  CAS  Google Scholar 

  35. Martinez E, Kundu TK, Fu J, et al. (1998) A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem. 273: 23781–23785.

    Article  PubMed  CAS  Google Scholar 

  36. Bannister AJ, Kouzarides T. (1996) The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643.

    Article  PubMed  CAS  Google Scholar 

  37. Ogryzko VV, Schiltz RL, Russanova V, et al. (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.

    Article  PubMed  CAS  Google Scholar 

  38. Yang XJ, Ogryzko VV, Nishikawa J, et al. (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324.

    Article  PubMed  CAS  Google Scholar 

  39. Blanco JC, Minucci S, Lu J, et al. (1998) The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 12: 1638–1651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Glass CK, Rose DW, Rosenfeld MG. (1997) Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9: 222–232.

    Article  PubMed  CAS  Google Scholar 

  41. Chen H, Lin RJ, Schiltz RL, et al. (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569–580.

    Article  PubMed  CAS  Google Scholar 

  42. Spencer TE, Jenster G, Burcin MM, et al. (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198.

    Article  PubMed  CAS  Google Scholar 

  43. Onate SA, Tsai SY, Tsai MJ, et al. (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  44. Champagne N, Bertos NR, Pelletier N, et al. (1999) Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J. Biol. Chem. 274: 28528–28536.

    Article  PubMed  CAS  Google Scholar 

  45. Smith ER, Eisen A, Gu W, et al. (1998) ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl. Acad. Sci. U.S.A. 95: 3561–3565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kamine J, Elangovan B, Subramanian T, et al. (1996) Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216: 357–366.

    Article  PubMed  CAS  Google Scholar 

  47. Reifsnyder C, Lowell J, Clarke A, et al. (1996) Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat. Genet. 14: 42–49.

    Article  PubMed  CAS  Google Scholar 

  48. Borrow J, Stanton VP, Jr., Andresen JM, et al. (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 14: 33–41.

    Article  PubMed  CAS  Google Scholar 

  49. Hilfiker A, Hilfiker-Kleiner D, Pannuti A, et al. (1997) mof, a putative acetyl transferase gene related to the Tip60 and Moz human genes and to the Sas genes of yeast, is required for dosage compensation in Drosophila. Embo J. 16: 2054–2060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Iizuka M, Stillman B. (1999) Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 274: 23027–23034.

    Article  PubMed  CAS  Google Scholar 

  51. Yamamoto T, Horikoshi M. (1997) Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J. Biol. Chem. 272: 30595–30598.

    Article  PubMed  CAS  Google Scholar 

  52. Hsieh YJ, Kundu TK, Wang Z, et al. (1999) The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol. Cell. Biol. 19: 7697–7704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kundu TK, Wang Z, Roeder RG. (1999) Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol. Cell. Biol. 19: 1605–1615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Mizzen CA, Yang XJ, Kokubo T, et al. (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  55. Ruiz-Garcia AB, Sendra R, Galiana M, et al. (1998) HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J. Biol. Chem. 273: 12599–12605.

    Article  PubMed  CAS  Google Scholar 

  56. Ohba R, Steger DJ, Brownell JE, et al. (1999) A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila. Mol. Cell. Biol. 19: 2061–2068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wittschieben BO, Otero G, de Bizemont T, et al. (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4: 123–128.

    Article  PubMed  CAS  Google Scholar 

  58. Yao TP, Oh SP, Fuchs M, et al. (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93: 361–372.

    Article  PubMed  CAS  Google Scholar 

  59. Workman JL, Kingston RE. (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67: 545–579.

    Article  PubMed  CAS  Google Scholar 

  60. Grant PA, Berger SL. (1999) Histone acetyltransferase complexes. Semin. Cell Dev. Biol. 10: 169–177.

    Article  PubMed  CAS  Google Scholar 

  61. Boffa LC, Vidali G, Mann RS, et al. (1978) Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J. Biol. Chem. 253: 3364–3366.

    PubMed  CAS  Google Scholar 

  62. Carmen AA, Rundlett SE, Grunstein M. (1996) HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 271: 15837–15844.

    Article  PubMed  CAS  Google Scholar 

  63. Vidal M, Gaber RF. (1991) RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 6317–6327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kim S, Benguria A, Lai CY, et al. (1999) Modulation of life-span by histone deacetylase genes in saccharomyces cerevisiae. Mol. Biol. Cell 10: 3125–3136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Vu QA, Zhang DE, Chroneos ZC, et al. (1987) Polyamines inhibit the yeast histone deacetylase. FEBS Lett. 220: 79–83.

    Article  PubMed  CAS  Google Scholar 

  66. Taunton J, Hassig CA, Schreiber SL. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411.

    Article  PubMed  CAS  Google Scholar 

  67. Yang WM, Inouye C, Zeng Y, et al. (1996) Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. U.S.A. 93: 12845–12850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. McKenzie EA, Kent NA, Dowell SJ, et al. (1993) The centromere and promoter factor, 1, CPF1, of Saccharomyces cerevisiae modulates gene activity through a family of factors including SPT21, RPD1 (SIN3), RPD3 and CCR4. Mol. Gen. Genet. 240: 374–386.

    PubMed  CAS  Google Scholar 

  69. Vidal M, Strich R, Esposito RE, et al. (1991) RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11: 6306–6316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pazin MJ, Kadonaga JT. (1997) What’s up and down with histone deacetylation and transcription? Cell 89: 325–328.

    Article  PubMed  CAS  Google Scholar 

  71. Wolffe AP. (1997) Transcriptional control. Sinful repression. Nature 387: 16–17.

    Article  PubMed  CAS  Google Scholar 

  72. Ayer DE, Lawrence QA, Eisenman RN. (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 767–776.

    Article  PubMed  CAS  Google Scholar 

  73. Schreiber-Agus N, Chin L, Chen K, et al. (1995) An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80: 777–786.

    Article  PubMed  CAS  Google Scholar 

  74. Hassig CA, Fleischer TC, Billin AN, et al. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–347.

    Article  PubMed  CAS  Google Scholar 

  75. Laherty CD, Yang WM, Sun JM, et al. (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89: 349–356.

    Article  PubMed  CAS  Google Scholar 

  76. Amati B, Dalton S, Brooks MW, et al. (1992) Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 359: 423–426.

    Article  PubMed  CAS  Google Scholar 

  77. Kretzner L, Blackwood EM, Eisenman RN. (1992) Myc and Max proteins possess distinct transcriptional activities. Nature 359: 426–429.

    Article  PubMed  CAS  Google Scholar 

  78. Chen JD, Evans RM. (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457.

    Article  PubMed  CAS  Google Scholar 

  79. Horlein AJ, Naar AM, Heinzel T, et al. (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404.

    Article  PubMed  CAS  Google Scholar 

  80. Alland L, Muhle R, Hou H, Jr., et al. (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49–55.

    Article  PubMed  CAS  Google Scholar 

  81. Heinzel T, Lavinsky RM, Mullen TM, et al. (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43–48.

    Article  PubMed  CAS  Google Scholar 

  82. Nagy L, Kao HY, Chakravarti D, et al. (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373–380.

    Article  PubMed  CAS  Google Scholar 

  83. Kadosh D, Struhl K. (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365–371.

    Article  PubMed  CAS  Google Scholar 

  84. Yang WM, Yao YL, Sun JM, et al. (1997) Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J. Biol. Chem. 272: 28001–28007.

    Article  PubMed  CAS  Google Scholar 

  85. Emiliani S, Fischle W, Van Lint C, et al. (1998) Characterization of a human RPD3 ortholog, HDAC3. Proc. Natl. Acad. Sci. U.S.A. 95: 2795–2800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Dangond F, Hafler DA, Tong JK, et al. (1998) Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells. Biochem. Biophys. Res. Commun. 242: 648–652.

    Article  CAS  Google Scholar 

  87. Wang AH, Bertos NR, Vezmar M, et al. (1999) HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol. Cell. Biol. 19: 7816–7827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Grozinger CM, Hassig CA, Schreiber SL. (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. U.S.A. 96: 4868–4873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Shi Y, Seto E, Chang LS, et al. (1991) Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 67: 377–388.

    Article  PubMed  CAS  Google Scholar 

  90. Van Lint C, Emiliani S, Ott M, et al. (1996) Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. Embo J. 15: 1112–1120.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang Y, Iratni R, Erdjument-Bromage H, et al. (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364.

    Article  PubMed  CAS  Google Scholar 

  92. Miska EA, Karlsson C, Langley E, et al. (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. Embo J. 18: 5099–5107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Aiba H, Kawaura R, Yamamoto E, et al. (1998) Isolation and characterization of high-osmolarity-sensitive mutants of fission yeast. J. Bacteriol. 180: 5038–5043.

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Carmen AA, Griffin PR, Calaycay JR, et al. (1999) Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc. Natl. Acad. Sci. U.S.A. 96: 12356–12361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wang J, Hoshino T, Redner RL, et al. (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl. Acad. Sci. U.S.A. 95: 10860–10865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wang J, Saunthararajah Y, Redner RL, et al. (1999) Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res. 59: 2766–2769.

    PubMed  CAS  Google Scholar 

  97. Grignani F, De Matteis S, Nervi C, et al. (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391: 815–818.

    Article  PubMed  CAS  Google Scholar 

  98. Lin RJ, Nagy L, Inoue S, et al. (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391: 811–814.

    Article  PubMed  CAS  Google Scholar 

  99. Kosugi H, Towatari M, Hatano S, et al. (1999) Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 13: 1316–1324.

    Article  PubMed  CAS  Google Scholar 

  100. Horiuchi K, Fujimoto D, Fukushima M, et al. (1981) Increased histone acetylation and deacetylation in rat ascites hepatoma cells. Cancer Res. 41: 1488–1491.

    PubMed  CAS  Google Scholar 

  101. Le Beau MM, Espinosa Rd, Neuman WL, et al. (1993) Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc. Natl. Acad. Sci. U.S.A. 90: 5484–5488.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Randhawa GS, Bell DW, Testa JR, et al. (1998) Identification and mapping of human histone acetylation modifier gene homologues. Genomics 51: 262–269.

    Article  PubMed  CAS  Google Scholar 

  103. Mahlknecht U, Bucala R, Hoelzer D, et al. (1999) High resolution physical mapping of human HDAC3, a potential tumor suppressor gene in the 5q31 region. Cytogenet. Cell Genet. 86: 237–239.

    Article  PubMed  CAS  Google Scholar 

  104. Anzick SL, Kononen J, Walker RL, et al. (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277: 965–968.

    Article  PubMed  CAS  Google Scholar 

  105. Rowley JD, Reshmi S, Sobulo O, et al. (1997) All patients with the T(11;16) (q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 90: 535–541.

    PubMed  CAS  Google Scholar 

  106. Taki T, Sako M, Tsuchida M, et al. (1997) The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89: 3945–3950.

    PubMed  CAS  Google Scholar 

  107. Sobulo OM, Borrow J, Tomek R, et al. (1997) MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc. Natl. Acad. Sci. U.S.A. 94: 8732–8737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Satake N, Ishida Y, Otoh Y, et al. (1997) Novel MLL-CBP fusion transcript in therapy-related chronic myelomonocytic leukemia with a t(11;16)(q23;p13) chromosome translocation. Genes Chromosomes Cancer 20: 60–63.

    Article  PubMed  CAS  Google Scholar 

  109. Quesnel B, Kantarjian H, Bjergaard JP, et al. (1993) Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature. J. Clin. Oncol. 11: 2370–2379.

    Article  PubMed  CAS  Google Scholar 

  110. Dutnall RN, Tafrov ST, Sternglanz R, et al. (1998) Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94: 427–438.

    Article  CAS  PubMed  Google Scholar 

  111. Mahlknecht U, Ottmann OG, Hoelzer D. (2000) When the band begins to play: Histone acetylation caught in the crossfire of gene control. Mol. Carcinog. (in press).

  112. Lee SK, Anzick SL, Choi JE, et al. (1999) A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo. J. Biol. Chem. 274: 34283–34293.

    Article  CAS  PubMed  Google Scholar 

  113. Imhof A, Yang XJ, Ogryzko VV, et al. (1997) Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7: 689–692.

    Article  CAS  PubMed  Google Scholar 

  114. Boyes J, Byfield P, Nakatani Y, et al. (1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396: 594–598.

    Article  PubMed  CAS  Google Scholar 

  115. Zhang W, Bieker JJ. (1998) Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl. Acad. Sci. U.S.A. 95: 9855–9860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Gu W, Roeder RG. (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  CAS  PubMed  Google Scholar 

  117. Sakaguchi K, Herrera JE, Saito S, et al. (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12: 2831–2841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Perkins ND, Felzien LK, Betts JC, et al. (1997) Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275: 523–527.

    Article  CAS  PubMed  Google Scholar 

  119. Munshi N, Merika M, Yie J, et al. (1998) Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol. Cell 2: 457–467.

    Article  CAS  PubMed  Google Scholar 

  120. Feng XH, Zhang Y, Wu RY, et al. (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 12: 2153–2163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Janknecht R, Wells NJ, Hunter T. (1998) TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 12: 2114–2119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Luo K, Stroschein SL, Wang W, et al. (1999) The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 13: 2196–2206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Janknecht R, Hunter T. (1996) Transcription. A growing coactivator network. Nature 383: 22–23.

    Article  CAS  PubMed  Google Scholar 

  124. Avantaggiati ML, Ogryzko V, Gardner K, et al. (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89: 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  125. Martinez-Balbas MA, Bannister AJ, Martin K, et al. (1998) The acetyltransferase activity of CBP stimulates transcription. Embo J. 17: 2886–2893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Zhou S, Buckhaults P, Zawel L, et al. (1998) Targeted deletion of Smad4 shows it is required for transforming growth factor beta and activin signaling in colorectal cancer cells. Proc. Natl. Acad. Sci. U.S.A. 95: 2412–2416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Muraoka M, Konishi M, Kikuchi-Yanoshita R, et al. (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12: 1565–1569.

    CAS  PubMed  Google Scholar 

  128. Giles RH, Peters DJ, Breuning MH. (1998) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14: 178–183.

    Article  CAS  PubMed  Google Scholar 

  129. Aguiar RC, Chase A, Coulthard S, et al. (1997) Abnormalities of chromosome band 8p11 in leukemia: two clinical syndromes can be distinguished on the basis of MOZ involvement. Blood 90: 3130–3135.

    CAS  PubMed  Google Scholar 

  130. Giordano A, Avantaggiati ML. (1999) p300 and CBP: partners for life and death. J. Cell Physiol. 181: 218–230.

    Article  CAS  PubMed  Google Scholar 

  131. Arany Z, Newsome D, Oldread E, et al. (1995) A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374: 81–84.

    Article  CAS  PubMed  Google Scholar 

  132. Lundblad JR, Kwok RP, Laurance ME, et al. (1995) Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374: 85–88.

    Article  CAS  PubMed  Google Scholar 

  133. Eckner R, Ludlow JW, Lill NL, et al. (1996) Association of p300 and CBP with simian virus 40 large T antigen. Mol. Cell. Biol. 16: 3454–3464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Carapeti M, Aguiar RC, Goldman JM, et al. (1998) A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91: 3127–3133.

    CAS  PubMed  Google Scholar 

  135. Liang J, Prouty L, Williams BJ, et al. (1998) Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92: 2118–2122.

    CAS  PubMed  Google Scholar 

  136. Voegel JJ, Heine MJ, Zechel C, et al. (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. Embo J. 15: 3667–3675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Voegel JJ, Heine MJ, Tini M, et al. (1998) The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. Embo J. 17: 507–519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Ida K, Kitabayashi I, Taki T, et al. (1997) Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22) (q23;q13). Blood 90: 4699–4704.

    CAS  PubMed  Google Scholar 

  139. Stassen MJ, Bailey D, Nelson S, et al. (1995) The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech. Dev. 52: 209–223.

    Article  CAS  PubMed  Google Scholar 

  140. Nislow C, Ray E, Pillus L. (1997) SET1, A Yeast Member of the Trithorax Family, Functions in Transcriptional Silencing and Diverse Cellular Processes. Mol. Biol. Cell 8: 2421–2436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Rozenblatt-Rosen O, Rozovskaia T, Burakov D, et al. (1998) The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl. Acad. Sci. U.S.A. 95: 4152–4157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pollard KJ, Peterson CL. (1998) Chromatin remodeling: a marriage between two families? Bioessays 20: 771–780.

    Article  CAS  PubMed  Google Scholar 

  143. Welch MD, Drubin DG. (1994) A nuclear protein with sequence similarity to proteins implicated in human acute leukemias is important for cellular morphogenesis and actin cytoskeletal function in Saccharomyces cerevisiae. Mol. Biol. Cell 5: 617–632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Jacobson S, Pillus L. (1999) Modifying chromatin and concepts of cancer. Curr. Opin. Genet. Dev. 9: 175–184.

    Article  CAS  PubMed  Google Scholar 

  145. Rubnitz JE, Morrissey J, Savage PA, et al. (1994) ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood 84: 1747–1752.

    CAS  PubMed  Google Scholar 

  146. Prasad R, Yano T, Sorio C, et al. (1995) Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia. Proc. Natl. Acad. Sci. U.S.A. 92: 12160–12164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Versteege I, Sevenet N, Lange J, et al. (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203–206.

    Article  CAS  PubMed  Google Scholar 

  148. Petrij F, Giles RH, Dauwerse HG, et al. (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376: 348–351.

    Article  CAS  PubMed  Google Scholar 

  149. Tanaka Y, Naruse I, Maekawa T, et al. (1997) Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc. Natl. Acad. Sci. U.S.A. 94: 10215–10220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Kamei Y, Xu L, Heinzel T, et al. (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.

    Article  CAS  PubMed  Google Scholar 

  151. Gu W, Shi XL, Roeder RG. (1997) Synergistic activation of transcription by CBP and p53. Nature 387: 819–823.

    Article  CAS  PubMed  Google Scholar 

  152. Lill NL, Grossman SR, Ginsberg D, et al. (1997) Binding and modulation of p53 by p300/CBP coactivators. Nature 387: 823–827.

    Article  CAS  PubMed  Google Scholar 

  153. Arias J, Alberts AS, Brindle P, et al. (1994) Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370: 226–229.

    Article  CAS  PubMed  Google Scholar 

  154. Angel P, Karin M. (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta. 10: 2–3.

    Google Scholar 

  155. Lee JS, See RH, Deng T, et al. (1996) Adenovirus E1A downregulates cJun- and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16: 4312–4326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yuan W, Condorelli G, Caruso M, et al. (1996) Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271: 9009–9013.

    Article  CAS  PubMed  Google Scholar 

  157. Chakravarti D, LaMorte VJ, Nelson MC, et al. (1996) Role of CBP/P300 in nuclear receptor signalling. Nature 383: 99–103.

    Article  CAS  PubMed  Google Scholar 

  158. DePinho RA. (1998) Transcriptional repression. The cancer-chromatin connection. Nature 391: 535–536.

    Article  CAS  Google Scholar 

  159. Luo RX, Postigo AA, Dean DC. (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92: 463–473.

    Article  CAS  PubMed  Google Scholar 

  160. McMahon SB, Wood MA, Cole MD. (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20: 556–562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Zhong H, Voll RE, Ghosh S. (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1: 661–671.

    Article  CAS  PubMed  Google Scholar 

  162. Merika M, Williams AJ, Chen G, et al. (1998) Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol. Cell 1: 277–287.

    Article  CAS  PubMed  Google Scholar 

  163. Ruddon RW. (1995). Genetic alterations in cancer cells. In: Cancer Biology. Oxford University Press, New York, pp 91–95.

    Google Scholar 

  164. Look AT. (1997) Oncogenic transcription factors in the human acute leukemias. Science 278: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  165. de The H, Chomienne C, Lanotte M, et al. (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347: 558–561.

    Article  PubMed  Google Scholar 

  166. Borrow J, Goddard AD, Sheer D, et al. (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249: 1577–1580.

    Article  CAS  PubMed  Google Scholar 

  167. Kalantry S, Delva L, Gaboli M, et al. (1997) Gene rearrangements in the molecular pathogenesis of acute promyelocytic leukemia. J. Cell Physiol. 173: 288–296.

    Article  CAS  PubMed  Google Scholar 

  168. Najfeld V, Scalise A, Troy K. (1989) A new variant translocation 11;17 in a patient with acute promyelocytic leukemia together with t(7;12). Cancer Genet. Cytogenet. 43: 103–108.

    Article  CAS  PubMed  Google Scholar 

  169. Licht JD, Chomienne C, Goy A, et al. (1995) Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85: 1083–1094.

    CAS  PubMed  Google Scholar 

  170. Li JY, English MA, Ball HJ, et al. (1997) Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J. Biol. Chem. 272: 22447–22455.

    Article  CAS  PubMed  Google Scholar 

  171. Grimwade D, Solomon E. (1997) Characterisation of the PML/RAR alpha rearrangement associated with t(15;17) acute promyelocytic leukaemia. Curr. Top. Microbiol. Immunol. 220: 81–112.

    CAS  PubMed  Google Scholar 

  172. He LZ, Guidez F, Tribioli C, et al. (1998) Distinct interactions of PML-RARalpha and PLZF-RARalpha with corepressors determine differential responses to RA in APL. Nat. Genet. 18: 126–135.

    Article  CAS  PubMed  Google Scholar 

  173. Kurokawa R, Soderstrom M, Horlein A, et al. (1995) Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377: 451–454.

    Article  CAS  PubMed  Google Scholar 

  174. Nakajima H, Kim YB, Terano H, et al. (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 241: 126–133.

    Article  CAS  PubMed  Google Scholar 

  175. Richon VM, Emiliani S, Verdin E, et al. (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. U.S.A. 95: 3003–3007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Ohki M. (1993) Molecular basis of the t(8;21) translocation in acute myeloid leukaemia. Semin. Cancer Biol. 4: 369–375.

    PubMed  CAS  Google Scholar 

  177. Nucifora G, Rowley JD. (1995) AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 86: 1–14.

    PubMed  CAS  Google Scholar 

  178. Lenny N, Westendorf JJ, Hiebert SW. (1997) Transcriptional regulation during myelopoiesis. Mol. Biol. Rep. 24: 157–168.

    Article  PubMed  CAS  Google Scholar 

  179. Berger R, Le Coniat M, Romana SP, et al. (1996) Secondary acute myeloblastic leukemia with t(16;21) (q24;q22). involving the AML1 gene. Hematol. Cell Ther. 38: 183–186.

    Article  PubMed  CAS  Google Scholar 

  180. Shimada M, Ohtsuka E, Shimizu T, et al. (1997) A recurrent translocation, t(16;21) (q24;q22), associated with acute myelogenous leukemia: identification by fluorescence in situ hybridization. Cancer Genet. Cytogenet. 96: 102–105.

    Article  PubMed  CAS  Google Scholar 

  181. Gamou T, Kitamura E, Hosoda F, et al. (1998) The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood 91: 4028–4037.

    PubMed  CAS  Google Scholar 

  182. Horsman DE, Gascoyne RD, Barnett MJ. (1995) Acute leukemia with structural rearrangements of chromosome 3. Leuk. Lymphoma 16: 369–377.

    Article  PubMed  CAS  Google Scholar 

  183. Secker-Walker LM, Mehta A, Bain B. (1995) Abnormalities of 3q21 and 3q26 in myeloid malignancy: a United Kingdom Cancer Cytogenetic Group study. Br. J. Haematol. 91: 490–501.

    Article  PubMed  CAS  Google Scholar 

  184. Speck NA, Terryl S. (1995) A new transcription factor family associated with human leukemias. Crit. Rev. Eukaryot. Gene Expr. 5: 337–364.

    Article  PubMed  CAS  Google Scholar 

  185. Meyers S, Hiebert SW. (1995) Indirect and direct disruption of transcriptional regulation in cancer: E2F and AML-1. Crit. Rev. Eukaryot. Gene Expr. 5: 365–383.

    Article  PubMed  CAS  Google Scholar 

  186. Romana SP, Poirel H, Leconiat M, et al. (1995) High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 86: 4263–4269.

    PubMed  CAS  Google Scholar 

  187. Raynaud S, Cave H, Baens M, et al. (1996) The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood 87: 2891–2899.

    PubMed  CAS  Google Scholar 

  188. Westendorf JJ, Yamamoto CM, Lenny N, et al. (1998) The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol. Cell. Biol. 18: 322–333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Tanaka T, Tanaka K, Ogawa S, et al. (1995) An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. Embo J. 14: 341–350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Niitsu N, Yamamoto-Yamaguchi Y, Miyoshi H, et al. (1997) AML1a but not AML1b inhibits erythroid differentiation induced by sodium butyrate and enhances the megakaryocytic differentiation of K562 leukemia cells. Cell Growth Differ. 8: 319–326.

    PubMed  CAS  Google Scholar 

  191. Kitabayashi I, Yokoyama A, Shimizu K, et al. (1998) Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. Embo J. 17: 2994–3004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Lutterbach B, Westendorf JJ, Linggi B, et al. (1998) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell. Biol. 18: 7176–7184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Brehm A, Miska EA, McCance DJ, et al. (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601.

    Article  PubMed  CAS  Google Scholar 

  194. Magnaghi-Jaulin L, Groisman R, Naguibneva I, et al. (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–605.

    Article  PubMed  CAS  Google Scholar 

  195. Mahlknecht U, Emiliani S, Najfeld V, et al. (1999) Genomic organization and chromosomal localization of the human histone deacetylase 3 gene. Genomics 56: 197–202.

    Article  PubMed  CAS  Google Scholar 

  196. Wlodarska I, De Wolf-Peeters C, Michaux L, et al. (1995) A new t(2;5) translocation in a null cell type CD30 positive anaplastic large cell lymphoma case. Leukemia 9: 1685–1688.

    PubMed  CAS  Google Scholar 

  197. Burkitt DP. (1971) Epidemiology of cancer of the colon and rectum. Cancer 28: 3–13.

    Article  PubMed  CAS  Google Scholar 

  198. Fuchs CS, Giovannucci EL, Colditz GA, et al. (1999) Dietary fiber and the risk of colorectal cancer and adenoma in women. N. Engl. J. Med. 340: 169–176.

    Article  PubMed  CAS  Google Scholar 

  199. Wargovich MJ, Levin B. (1996) Grist for the mill: role of cereal fiber and calcium in prevention of colon cancer. J. Natl. Cancer Inst. 88: 67–69.

    Article  PubMed  CAS  Google Scholar 

  200. Zoran DL, Turner ND, Taddeo SS, et al. (1997) Wheat bran diet reduces tumor incidence in a rat model of colon cancer independent of effects on distal luminal butyrate concentrations. J. Nutr. 127: 2217–2225.

    Article  PubMed  CAS  Google Scholar 

  201. Folino M, McIntyre A, Young GP. (1995) Dietary fibers differ in their effects on large bowel epithelial proliferation and fecal fermentation-dependent events in rats. J. Nutr. 125: 1521–1528.

    PubMed  CAS  Google Scholar 

  202. DeCosse JJ, Miller HH, Lesser ML. (1989) Effect of wheat fiber and vitamins C and E on rectal polyps in patients with familial adenomatous polyposis. J. Natl. Cancer Inst. 81: 1290–1297.

    Article  PubMed  CAS  Google Scholar 

  203. Weaver GA, Krause JA, Miller TL, et al. (1988) Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 29: 1539–1543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Clausen MR, Bonnen H, Mortensen PB. (1991) Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Gut 32: 923–928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. D’Argenio G, Cosenza V, Delle Cave M, et al. (1996) Butyrate enemas in experimental colitis and protection against large bowel cancer in a rat model. Gastroenterology 110: 1727–1734.

    Article  PubMed  Google Scholar 

  206. Medina V, Afonso JJ, Alvarez-Arguelles H, et al. (1998) Sodium butyrate inhibits carcinoma development in a 1,2-dimethylhydrazine-induced rat colon cancer. JPEN J. Parenter. Enteral Nutr. 22: 14–17.

    Article  PubMed  CAS  Google Scholar 

  207. Velazquez OC, Jabbar A, DeMatteo RP, et al. (1996) Butyrate inhibits seeding and growth of colorectal metastases to the liver in mice. Surgery 120: 440–447.

    Article  PubMed  CAS  Google Scholar 

  208. Sealy L, Chalkley R. (1978) The effect of sodium butyrate on histone modification. Cell 14: 115–121.

    Article  PubMed  CAS  Google Scholar 

  209. Boffa LC, Lupton JR, Mariani MR, et al. (1992) Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Res. 52: 5906–5912.

    PubMed  CAS  Google Scholar 

  210. Cuisset L, Tichonicky L, Delpech M. (1998) A protein phosphatase is involved in the inhibition of histone deacetylation by sodium butyrate. Biochem. Biophys. Res. Commun. 246: 760–764.

    Article  CAS  PubMed  Google Scholar 

  211. Barnard JA, Warwick G. (1993) Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Differ. 4: 495–501.

    CAS  PubMed  Google Scholar 

  212. Yoshida M, Beppu T. (1988) Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A. Exp. Cell Res. 177: 122–131.

    Article  CAS  PubMed  Google Scholar 

  213. Archer SY, Meng S, Shei A, et al. (1998) p21(Waf1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. U. S. A. 95: 6791–6796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Archer SY, Hodin RA. (1999) Histone acetylation and cancer. Curr. Opin. Genet. Dev. 9: 171–174.

    Article  CAS  PubMed  Google Scholar 

  215. Kijima M, Yoshida M, Sugita K, et al. (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem. 268: 22429–22435.

    CAS  PubMed  Google Scholar 

  216. Yoshida M, Kijima M, Akita M, et al. (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265: 17174–17179.

    CAS  PubMed  Google Scholar 

  217. Kwon HJ, Owa T, Hassig CA, et al. (1998) Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc. Natl. Acad. Sci. U.S.A. 95: 3356–3361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Kim YB, Lee KH, Sugita K, et al. (1999) Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 18: 2461–2470.

    Article  CAS  PubMed  Google Scholar 

  219. Saito A, Yamashita T, Mariko Y, et al. (1999) A synthetic inhibitor of histone deacetylase, MS-27–275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. U.S.A. 96: 4592–4597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Samid D, Hudgins WR, Shack S, et al. (1997) Phenylacetate and phenylbutyrate as novel, nontoxic differentiation inducers. Adv. Exp. Med. Biol. 400A: 501–505.

    Article  PubMed  CAS  Google Scholar 

  221. Warrell RP, Jr., He LZ, Richon V, et al. (1998) Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl. Cancer Inst. 90: 1621–1625.

    Article  PubMed  CAS  Google Scholar 

  222. Lea MA, Tulsyan N. (1995) Discordant effects of butyrate analogues on erythroleukemia cell proliferation, differentiation and histone deace-tylase. Anticancer Res. 15: 879–883.

    PubMed  CAS  Google Scholar 

  223. Lea MA, Randolph VM, Hodge SK. (1999) Induction of histone acetylation and growth regulation in eryrthroleukemia cells by 4-phenylbutyrate and structural analogs. Anticancer Res. 19: 1971–1976.

    PubMed  CAS  Google Scholar 

  224. Saunders N, Dicker A, Popa C, et al. (1999) Histone deacetylase inhibitors as potential anti-skin cancer agents. Cancer Res. 59: 399–404.

    PubMed  CAS  Google Scholar 

  225. Engelhard HH, Duncan HA, Dal Canto M. (1997) Molecular characterization of glioblastoma cell differentiation. Neurosurgery 41: 886–896.

    Article  PubMed  CAS  Google Scholar 

  226. Huang H, Reed CP, Zhang JS, et al. (1999) Carboxypeptidase A3 (CPA3): a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cells. Cancer Res. 59: 2981–2988.

    PubMed  CAS  Google Scholar 

  227. Ellerhorst J, Nguyen T, Cooper DN, et al. (1999) Induction of differentiation and apoptosis in the prostate cancer cell line LNCaP by sodium butyrate and galectin-1. Int. J. Oncol. 14: 225–232.

    PubMed  CAS  Google Scholar 

  228. Keohane AM, LP On, Belyaev ND, et al. (1996) X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol. 180: 618–630.

    Article  PubMed  CAS  Google Scholar 

  229. Braunstein M, Sobel RE, Allis CD, et al. (1996) Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell Biol. 16: 4349–4356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Moens PB. (1995) Histones H1 and H4 of surface-spread meiotic chromosomes. Chromosoma 104: 169–174.

    Article  CAS  PubMed  Google Scholar 

  231. Lee DY, Hayes JJ, Pruss D, et al. (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84.

    Article  CAS  PubMed  Google Scholar 

  232. Mutskov V, Gerber D, Angelov D, et al. (1998) Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding. Mol. Cell Biol. 18: 6293–6304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Vettese-Dadey M, Grant PA, Hebbes TR, et al. (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo J. 15: 2508–2518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Rundlett SE, Carmen AA, Suka N, et al. (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392: 831–835.

    Article  CAS  PubMed  Google Scholar 

  235. Ait-Si-Ali S, Ramirez S, Barre FX, et al. (1998) Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396: 184–186.

    Article  CAS  PubMed  Google Scholar 

  236. Cosma MP, Tanaka T, Nasmyth K. (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97: 299–311.

    Article  CAS  PubMed  Google Scholar 

  237. Kao HY, Downes M, Ordentlich P, et al. (2000) Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 14: 55–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  238. Akiyoshi S, Inoue H, Hanai J, et al. (1999) c-Ski acts as a Transcriptional Co-repressor in Transforming Growth Factor-beta Signaling through interaction with Smads. J. Biol. Chem. 274: 35269–35277.

    Article  CAS  PubMed  Google Scholar 

  239. Torchia J, Glass C, Rosenfeld MG. (1998) Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10: 373–383.

    Article  CAS  PubMed  Google Scholar 

  240. Davie JR, Spencer VA. (1999) Control of histone modifications. J. Cell Biochem. 33: 141–148.

    Article  Google Scholar 

  241. Bauer A, Mikulits W, Lagger G, et al. (1998) The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. Embo J. 17: 4291–4303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Bartl S, Taplick J, Lagger G, et al. (1997) Identification of mouse histone deacetylase 1 as a growth factor-inducible gene. Mol. Cell Biol. 17: 5033–5043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Allard S, Utley RT, Savard J, et al. (1999) NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing esa1p and the ATM-related cofactor tra1p. Embo J. 18: 5108–5119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Clarke AS, Lowell JE, Jacobson SJ, et al. (1999) Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell Biol. 19: 2515–2526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Zhang W, Bone JR, Edmondson DG, et al. (1998) Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. Embo J. 17: 3155–3167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Dunphy EL, Johnson T, Auerbach SS, et al. (2000) Requirement for TAF(II)250 Acetyltransferase Activity in Cell Cycle Progression. Mol. Cell Biol. 20: 1134–1139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Kasten MM, Dorland S, Stillman DJ. (1997) A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol. Cell Biol. 17: 4852–4858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Kim S, Benguria A, Lai CY, et al. (1999) Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol. Biol. Cell 10: 3125–3136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We wish to apologize to those investigators whose relevant work was not discussed or cited directly in this manuscript due to space limitations. This work was partly supported by the German National Science Foundation (Deutsche Forschungsgemeinschaft, MA 2057/1-1) and institutional funds from the University of Frankfurt Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Mahlknecht MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahlknecht, U., Hoelzer, D. Histone Acetylation Modifiers in the Pathogenesis of Malignant Disease. Mol Med 6, 623–644 (2000). https://doi.org/10.1007/BF03402044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402044

Keywords

Navigation