Skip to main content
Log in

Coordinate Changes in Myosin Heavy Chain Isoform Gene Expression Are Selectively Associated With Alterations in Dilated Cardiomyopathy Phenotype

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The most common cause of chronic heart failure in the US is secondary or primary dilated cardiomyopathy (DCM). The DCM phenotype exhibits changes in the expression of genes that regulate contractile function and pathologic hypertrophy. However, it is unclear if any of these alterations in gene expression are disease producing or modifying.

Materials and Methods

One approach to providing evidence for cause-effect of a disease-influencing gene is to quantitatively compare changes in phenotype to changes in gene expression by employing serial measurements in a longitudinal experimental design. We investigated the quantitative relationships between changes in gene expression and phenotype n 47 patients with idiopathic DCM. In endomyocardial biopsies at baseline and 6 months later, we measured mRNA expression of genes regulating contractile function (β-adrenergic receptors, sarcoplasmic reticulum Ca2+ ATPase, and α- and β-myosin heavy chain isoforms) or associated with pathologic hypertrophy (β-myosin heavy chain and atrial natriuretic peptide), plus β-adrenergic receptor protein expression. Left ventricular phenotype was assessed by radionuclide ejection fraction.

Results

Improvement in DCM phenotype was directly related to a coordinate increase in α- and a decrease in β-myosin heavy chain mRNA expression. In contrast, modification of phenotype was unrelated to changes in the expression of β1- or β2-adrenergic receptor mRNA or protein, or to the mRNA expression of sarcoplasmic reticulum Ca2+ ATPase and atrial natriuretic peptide.

Conclusion

We conclude that in human DCM, phenotypic modification is selectively associated with myosin heavy chain isoform changes. These data support the hypothesis that myosin heavy chain isoform changes contribute to disease progression in human DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feldman AM, Ray PA, Silan CM, Mercer JA, Minobe W, Bristow MR. (1991) Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation 83: 1866–1872.

    Article  CAS  PubMed  Google Scholar 

  2. Bristow MR. (1998) Why does the myocardium fail? New insights from basic science. Lancet 352(suppl I): 8–14.

    Article  CAS  Google Scholar 

  3. Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ. (1993) Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 87: 454–463.

    Article  CAS  PubMed  Google Scholar 

  4. Bristow MR, Minobe WA, Raynolds MV, et al. (1993) Reduced β1 receptor messenger RNA abundance in the failing human heart. J. Clin. Invest. 92: 2737–2745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mercadier JJ, Lompre AM, Duc P, et al. (1990) Altered sarcoplasmic reticulum Ca-ATPase gene expression in the human ventricle during end-stage heart failure. J. Clin. Invest. 85: 305–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakao K, Minobe WA, Roden RL, Bristow MR, Leinwand LA. (1997) Myosin heavy chain gene expression in human heart failure. J. Clin. Invest. 100: 2362–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lowes BD, Minobe WA, Abraham WT, et al. (1997) Changes in gene expression in the intact human heart: down-regulation of α-myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest. 100: 2315–2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lowes BD, Gilbert EM, Abraham WT, et al. (2002) Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N. Engl. J. Med. 346: 1357–1365.

    Article  CAS  PubMed  Google Scholar 

  9. Lopau K, Mark J, Schramm L, Heidbreder E, Wanner C. (2000) Hormonal changes in brain death and immune activation in the donor. Transplant. Int. 13: S282–S285.

    Article  Google Scholar 

  10. Heilbrunn SM, Shah P, Bristow MR, Valantine HA, Ginsburg R, Fowler MB. (1989) Increased β-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 79: 483–490.

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert EM, Abraham WT, Olsen S, et al. (1996) Comparative hemodynamic, left ventricular functional, and antiadrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation 94: 2817–2825.

    Article  CAS  PubMed  Google Scholar 

  12. Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM. (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc. Natl. Acad. Sci. U.S.A. 89: 5251–5255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adolph EA, Subramanian A, Cserjesi P, Olson EN, Robbins J. (1993) Role of myocyte-specific enhancer-binding factor (Mef-2) in transcriptional regulation of the α-cardiac myosin heavy chain gene. J. Biol. Chem. 268: 5349–5352.

    PubMed  CAS  Google Scholar 

  14. Wang AM, Doyle MV, Mark DF. (1989) Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A. 86: 9717–9721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Engelhardt S, Bohm M, Erdmann E, Lohse MJ. (1996) Analysis of beta-receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J. Am. Coll. Cardiol. 27: 146–154.

    Article  CAS  PubMed  Google Scholar 

  16. Eichhorn EJ, Bristow MR. (1996) Medical therapy can improve the biologic properties of the chronically failing heart: a new era in the treatment of heart failure. Circulation 94: 2285–2296.

    Article  CAS  PubMed  Google Scholar 

  17. Hall SA, Cigarroa CG, Marcoux L, Risser RC, Grayburn PA, Eichhorn EJ. (1995) Time course of improvement in left ventricular function, mass, and geometry in patients with congestive heart failure treated with β-adrenergic blockade. J. Am. Coll. Cardiol. 5: 1154–1161.

    Article  Google Scholar 

  18. Quaife RA, Gilbert EM, Christian PE, et al. (1996) Effects of carvedilol on systolic and diastolic left ventricular performance in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 78: 779–784.

    Article  CAS  PubMed  Google Scholar 

  19. Doughty RN, Whalley GA, Gamble G, MacMahon S, Sharpe N. (1996) Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease. J. Am. Coll. Cardiol. 29: 1060–1066.

    Article  Google Scholar 

  20. Quaife RA, Christian PE, Gilbert EM, Datz FL, Volkman K, Bristow MR. (1998) Effects of carvedilol on right ventricular function in chronic heart failure. Am. J. Cardiol. 81: 247–250.

    Article  CAS  PubMed  Google Scholar 

  21. Lowes BD, Gill WT, Larrain JR, Robertson AD, Bristow MR, Gilbert EM. (1999) Effects of carvedilol on left ventricular mass, chamber geometry and mitral regurgitation in chronic heart failure. Am. J. Cardiol. 83: 1201–1205.

    Article  CAS  PubMed  Google Scholar 

  22. Cintron G, Johnson G, Francis G, Cobb F, Cohn JN. (1993) Prognostic significance of serial changes in left ventricular ejection fraction in patients with congestive heart failure. Circulation 87(suppl VI): VI–17–VI–23.

    Google Scholar 

  23. Cetta F, Michels VV. (1995) The natural history and spectrum of idiopathic dilated cardiomyopathy, including HIV and peripartum cardiomyopathy. Curr. Opin. Cardiol. 10: 332–338.

    Article  CAS  PubMed  Google Scholar 

  24. Zaret BL, Wackers FJ. (1991) Measurement of right ventricular function. In Gerson MC, ed. Cardiac Nuclear Medicine, 2nd ed. New York: McGraw-Hill.

    Google Scholar 

  25. Bristow MR, Mestroni L, Bohlmeyer T, Gilbert EM. (2001) Dilated cardiomyopathies. In Fuster V, Alexander RW, O’Rourke RA, eds. Hurst’s the Heart, Volume 2, 10th ed. New York: McGraw-Hill; pp. 1947–1966.

    Google Scholar 

  26. Swynghedauw B. (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol. Rev. 66: 710–771.

    Article  CAS  PubMed  Google Scholar 

  27. Nadal-Ginard B, Mahdavi V. (1989) Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches. J. Clin. Invest. 4: 1693–1700.

    Article  Google Scholar 

  28. Schwartz K, Chassagne C, Boheler KR. (1993) The molecular biology of heart failure. J. Am. Coll. Cardiol. 22: 30A–33A.

    Article  CAS  PubMed  Google Scholar 

  29. Colucci WS. (1997) Molecular and cellular mechanisms of myocardial failure. Am. J. Cardiol. 80: 15L–25L.

    Article  CAS  PubMed  Google Scholar 

  30. Bristow MR, Anderson FL, Port JD, et al. (1991) Differences in β-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84: 1024–1039.

    Article  CAS  PubMed  Google Scholar 

  31. Rahko PS. (1994) Comparative efficacy of three indexes of left ventricular performance derived from pressure-volume loops in heart failure induced by tachypacing. J. Am. Coll. Cardiol. 23: 209–218.

    Article  CAS  PubMed  Google Scholar 

  32. Cohn JN, Ferrari R, Sharpe N, on behalf of the International Forum on Cardiac Remodeling. (2000) Cardiac remodeling—concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35: 569–582.

    Article  CAS  PubMed  Google Scholar 

  33. Weiss A, Leinwand LA. (1996) The mammalian myosin heavy chain gene family. Ann. Rev. Cell. Dev. Biol. 12: 417–439.

    Article  CAS  Google Scholar 

  34. Miyata S, Minobe WA, Bristow MR, Leinwand LA. (2000) Myosin heavy chain isoform expression in the failing and non-failing human heart. Circ. Res. 86: 386–390.

    Article  CAS  PubMed  Google Scholar 

  35. Vanburen P, Harris DE, Alpert NR, Warshaw DM. (1995) Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ. Res. 77: 439–444.

    Article  CAS  PubMed  Google Scholar 

  36. Imamura SI, Matsuoka R, Hiratsuka E, et al. (1991) Adaptational changes of MyHC gene expression and isoenzyme transition in cardiac overloading. Am. J. Physiol. 260: H73–H79.

    PubMed  CAS  Google Scholar 

  37. Herron TJ, McDonald KS. (2002) Small amounts of α-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circ. Res. 90: 1–4.

    Article  CAS  Google Scholar 

  38. Litten RZ 3rd, Martin BJ, Low RB, Alpert NR. (1982) Altered myosin isozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts. Circ. Res. 50: 856–864.

    Article  CAS  PubMed  Google Scholar 

  39. Reiser PJ, Portman MA, Ning XH, Schomisch Moravee C. (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am. J. Physiol. 280: H1814–H1820.

    CAS  Google Scholar 

  40. Razumova MV, de Tombe PP, Moss RL. (2001) Simulations predict that expression of small amounts of αMHC in mammalian ventricle significantly accelerates the rate of rise of force. Biophys. J. 80: 261a.

    Google Scholar 

  41. Jones WK, Grupp IL, Doetschman T, et al. (1996) Ablation of the murine alpha myosin heavy chain gene leads to dosage effects and functional deficits in the heart. J. Clin. Invest. 98: 1906–1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morkin E. (2000) Control of myosin heavy chain gene expression. Microsc. Res. Tech. 50: 522–531.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was sponsored by NIH Grants 1R01 HL48013 from the NHLBI, M01-RR00051 and M01-RR00064 from the National Center for Research Resources, and by GlaxoSmithKline Company. The authors are grateful to Laurel Hunter for her assistance in manuscript and figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Bristow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, W.T., Gilbert, E.M., Lowes, B.D. et al. Coordinate Changes in Myosin Heavy Chain Isoform Gene Expression Are Selectively Associated With Alterations in Dilated Cardiomyopathy Phenotype. Mol Med 8, 750–760 (2002). https://doi.org/10.1007/BF03402039

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402039

Keywords

Navigation