Skip to main content
Log in

Basic Fibroblast Growth Factor Autocrine Loop Controls Human Osteosarcoma Phenotyping and Differentiation

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

We focused on the phenotype of non-mineralizing MG63 and mineralizing TE85 human osteosarcoma cells and investigated the role of bFGF in modulating their differentiative responses. Basic FGF expression and bFGF effects on osteocalcin, runt-related transcription factor-2 (RUNX2), matrix molecular production and bFGF receptors, were evaluated.

Materials and Methods

Osteocalcin and RUNX2 gene expression were studied by RT-PCR analysis. We evaluated cell proliferation by DNA content and performed differentiation studies on glycosaminoglican (GAG), collagen and proteoglican (PG) synthesis by using radiolabelled precursors and Northern blotting. BFGF receptors were quantified by bFGF receptor binding assay.

Results

Osteocalcin is expressed in MG63 and TE65. RUNX2 RNA is differentially spliced in the two cell lines. BFGF elicits the effects of differentially splicing RUNX2. Proliferation, GAG synthesis, bFGF and proteoglycan mRNA expression, high and low affinity bFGF receptors, were more marked in MG63 and differently affected by bFGF. Procollagen expression and alkaline phosphatase activity were significantly reduced. BFGF increased TE85 cell proliferation and reduced TE85 procollagen and osteocalcin production.

Conclusions

The different splice variants in RUNX2 gene in the two cell lines might be related to their different phenotypes. The less differentiated stage of MG63 could also be related to bFGF over-production and more bFGF receptors. The consequent increase in bFGF-bFGF receptor binding could explain the bFGF differentiative effects on MG63. We suggest an autocrine role of bFGF endogenous release in controlling the different osteosarcoma phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Franchi A, Arganini L, Baroni G, et al. (1998) Expression of transforming growth factor beta isoforms in osteosarcoma variants: Association of TGF beta 1 with high-grade osteosarcomas. J. Pathol. 185: 284–289.

    Article  CAS  PubMed  Google Scholar 

  2. Girnita L, Girnita A, Wang M, et al. (2000) A link between basic fibroblast growth factor (bFGF) and Fewing’s sarcoma cells. Oncogene 31: 4298–4301.

    Article  CAS  Google Scholar 

  3. Yamaguchi F, Saya H, Bruner JM, Morrison RS. (1994) Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc. Natl. Acad. Sci. USA 91: 484–488.

    Article  CAS  PubMed  Google Scholar 

  4. Mason IJ. (1994) The ins and outs of fibroblast growth factors. Cell 78: 547–552.

    Article  CAS  PubMed  Google Scholar 

  5. Fedark NS, Termine JD, Young MF, Robey PG. (1990) Temporal regulation of hyaluronan and proteoglycan metabolism by human bone cells in vitro. J. Biol. Chem. 265: 12200–12209.

    Google Scholar 

  6. Bodo M, Carinci P, Venti G, et al. (1997) Glycosaminoglycan metabolism and cytokine release in normal and otosclerotic human bone cells interleukin-1 treated. Connect. Tissue Res. 36: 231–240.

    Article  CAS  PubMed  Google Scholar 

  7. Mundy GR, Bratter FC. (1995) Factors regulating bone resorbing and bone forming cells. In: Bone Remodelling and its Disorders. San Antonio: Martin Dunitz, 39–65.

    Google Scholar 

  8. Harbour ME, Gregory JW, Jenkins HR, Evans BA. (2000) Proliferative response of different human osteoblast like cell proinflammatory cytokines. Pediatr. Res. 48: 163–168.

    Article  CAS  PubMed  Google Scholar 

  9. Szebenyi G, Fallon JF. (1999) Fibroblast growth factors as multifunctional signaling factors. Intern. Review of Citology Acad. Press 185: 45–105.

    Article  CAS  Google Scholar 

  10. Bodo M, Baroni T, Carinci F, et al. (2000) Interleukin secretion, proteoglycan and procollagen alpha gene expression in Crouzon fibroblasts treated with basic fibroblast growth factor. Cytokine 12: 1280–1283.

    Article  CAS  PubMed  Google Scholar 

  11. Wilkie AOM. (1997) Craniosynostosis: genes and mechanisms. Human Mol. Genet. 6: 1647–1656.

    Article  CAS  Google Scholar 

  12. Bodo M, Baroni T, Carinci F, et al. (1999) A regulatory role of fibroblast growth factor in the expression of decorin, biglycan, betaglycan, and syndecan in osteoblasts from patients with Crouzon’s syndrome. Eur. J. Cell Biol. 78: 323–330.

    Article  CAS  PubMed  Google Scholar 

  13. Carinci P, Becchetti E, Bodo M. (2000) Role of extracellular matrix and growth factors in skull morphogenesis and in pathogenesis of craniosynostosis. Int. J. Dev. Biol. 44: 715–723.

    PubMed  CAS  Google Scholar 

  14. Clover J, Gowen M. (1994) Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone 15: 585–591.

    Article  CAS  PubMed  Google Scholar 

  15. Bilbe G, Roberts E, Birch M, Evans DB. (1996) PCR phenotyping of cytokines, growth factors and their receptors and bone matrix proteins in human osteoblast-like cell lines. Bone 19: 437–445.

    Article  CAS  PubMed  Google Scholar 

  16. MacPherson H, Noble BS, Ralston SH. (1999) Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells. Bone 24: 179–185.

    Article  CAS  PubMed  Google Scholar 

  17. Stewart M, Terry A, Hu M, et al. (1997) Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA(CBFA1): evidence for a new myc collaborating oncogene. Proc. Natl. Acad. Sci. USA 94: 8646–8651.

    Article  CAS  PubMed  Google Scholar 

  18. Xiao ZS, Thomas R, Hinson TK, Quarles LD. (1998) Genomic structure and isoform expression of the mouse, rat and human Cbfa1/Osf2 transcription factor. Gene 214: 187–197.

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee C, Javed A, Choi JY, et al. (2001) Differential regulation of the two principal Runx2/Cbfa1 n-terminal iso-forms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 142: 4026–4039.

    Article  CAS  PubMed  Google Scholar 

  20. Ibbotson KJ, Harrod J, Gowen M, et al. (1986) Human recombinant transforming growth factor alpha stimulates bone resorption and inhibits formation in vitro. Proc. Natl. Acad. Sci. USA 83: 2228–2232.

    Article  CAS  PubMed  Google Scholar 

  21. Labarca C, Paigen KA. (1980) Simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102: 344–352.

    Article  CAS  PubMed  Google Scholar 

  22. Conrad GW, Hamilton C, Haynes E. (1977) Differences in glycosaminoglycans synthesized by fibroblast-like cells from chick cornea, heart, and skin. J. Biol. Chem. 252: 6861–6870.

    PubMed  CAS  Google Scholar 

  23. Chomczynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  24. Maniatis T, Fritsch EF, Sambrook J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  25. Fisher LW, Termine JD, Young MF. (1989) Deduced protein sequence of bone small proteoglycan 1 (biglycan) shows homology with proteoglycan II (decorin) and several noncon-nective tissue proteins in a variety of species. J. Biol. Chem. 264: 4571–4576.

    PubMed  CAS  Google Scholar 

  26. Moscatelli D. (1987) High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J. Cell. Physiol. 131: 123–130.

    Article  CAS  PubMed  Google Scholar 

  27. Hurley MM, Abreu C, Harrison JR, et al. (1993) Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J. Biol. Chem. 268: 5588–5593.

    PubMed  CAS  Google Scholar 

  28. Slater M, Patava J, Mason RS. (1994) Role of chondroitin sulfate glycosaminoglycans in mineralizing osteoblast-like cells: effects of hormonal manipulation. J. Bone Miner. Res. 9: 161–169.

    Article  CAS  PubMed  Google Scholar 

  29. Hausser H, Schonherr E, Kresse H. (1993) Different galactosaminoglycan composition of small proteoglycans from osteosarcoma cells. Glycobiology 3: 557–562.

    Article  CAS  PubMed  Google Scholar 

  30. Kresse H, Hausser H, Schönherr E, Bittner K. (1994) Biosynthesis and interactions of small chondroitin/dermatan sulphate proteoglycans. Eur. J. Clin. Chem. Clin. Biochem. 32: 259–264.

    PubMed  CAS  Google Scholar 

  31. Hocking AM, Shinomura T, McQuillan DJ. (1998) Leucinerich repeat glycoproteins of the extracellular matrix. Matrix Biol. 17: 1–19.

    Article  CAS  PubMed  Google Scholar 

  32. Schönherr E, Witsch-Prehm P, Harrach B, et al. (1995) Interaction of Biglycan with Type I Collagen. J. Biol. Chem. 270: 2776–2783.

    Article  PubMed  Google Scholar 

  33. Vogel KG, Paulsson M, Heinegard D. (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 223: 587–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merle B, Malaval L, Lawler J, et al. (1997) Decorin inhibits cell attachment to thrombospondin-1 by binding to a KKTR-dependent cell adhesive site present within the N-terminal domain of thrombospondin-1. J. Cell Biochem. 67: 75–83.

    Article  CAS  PubMed  Google Scholar 

  35. Santra M, Mann DM, Mercer EW, et al. (1997) Ectopic expression of decorin protein core causes a generalized growth suppression in neoplastic cells of various histogenetic origin and requires endogenous p21, an inhibitor of cyclin-dependent kinases. J. Clin. Invest. 100: 149–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Merle B, Durussel L, Delmas PD, Clezardin P. (1999) Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain. J. Cell Biochem. 75: 538–546.

    Article  CAS  PubMed  Google Scholar 

  37. Wegrowski Y, Gillery P, Kotlarz G, et al. (2000) Modulation of sulfated glycosaminoglycan and small proteoglycan synthesis by the extracellular matrix. Mol. Cell. Biochem. 205: 125–131.

    Article  CAS  PubMed  Google Scholar 

  38. Evangelisti R, Valeno V, Bosi G, et al. (1998) A contribution to the regulation of proteoglycan production: modulation by TGF α, TGF β and IL-1 of glycosaminoglycan biosynthesis on β-D-xiloside in chick embryo fibroblasts. Conn. Tissue Res. 37: 77–85.

    Article  CAS  Google Scholar 

  39. Yayon A, Klagsbrun M, Esko JD, et al. (1991) Cell Surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841–848.

    Article  CAS  PubMed  Google Scholar 

  40. Mignatti P, Morimoto T, Rifkin DB. (1998) Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner. Proc. Natl. Acad. Sci. USA 88: 11007–11011.

    Article  Google Scholar 

  41. Mignatti P, Morimoto T, Rifkin DB. (1992) Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via s pathway independent of the endo-plasmic reticulum-Golgi complex. J. Cell. Physiol. 151: 81–93.

    Article  CAS  PubMed  Google Scholar 

  42. Bashkin P, Neufeld G, Gitay-Goren H, Vlodavsky I. (1992) Release of cell surface-associated basic fibroblast growth factor by glycosylphosphatidylinositol-specific phospholipase C. J. Cell. Physiol. 151: 126–137.

    Article  CAS  PubMed  Google Scholar 

  43. Bodo M, Baroni T, Bellocchio S, et al. (2001) Bronchial epithelial cell matrix production in response to silica and basic fibroblast growth factor. Mol. Med. 7: 83–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benini S, Baldini N, Manara MC, et al. (1999) Redundancy of autocrine loops in human osteosarcoma cells. Int. J. Cancer 9: 581–588.

    Article  Google Scholar 

  45. Slominski A, Wortsman J, Carlson A, et al. (1999) Molecular pathology of soft tissue and bone tumors. Arch. Pathol. Lab. Med. 123: 1246–1259.

    PubMed  CAS  Google Scholar 

  46. Sulzbacher I, Traxler M, Mosberger I, et al. (2000) Platelet-derived growth factor-AA and alpha receptor expression suggest an autocrine and/or paracrine loop in osteosarcoma. Mod. Pathol. 13: 632–637.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from C.N.R., Ministero Università Ricerca Scientifica Tecnologica (M.I.U.R.) and Fondazione Cassa di Risparmio di Perugia (SA 172901 project). We are indebted to Dr. Larry W. Fisher (National Institutes of Health, Bethesda, MD, USA) for biglycan and decorin core protein cDNAs; to Dr. Judith Abraham, PhD (Scios Nova, CA, USA) for bFGF cDNA; to Dr. Eero Vuorio (University of Turku, Finland) for procollagen α1 (I) cDNA; to Dr. M. Bernfield (Newborn Medicine, Children’s Hospital, Boston, MA, USA) for syndecan-1 cDNA.

We thank Dr. Geraldine Boyd for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Bodo.

Additional information

*These authors contributed equally to the project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodo, M., Lilli, C., Bellucci, C. et al. Basic Fibroblast Growth Factor Autocrine Loop Controls Human Osteosarcoma Phenotyping and Differentiation. Mol Med 8, 393–404 (2002). https://doi.org/10.1007/BF03402020

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402020

Keywords

Navigation