Skip to main content
Log in

Systemic p53 Gene Therapy of Cancer with Immunolipoplexes Targeted by Anti-Transferrin Receptor scFv

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and antitumor efficacy when used for systemic p53 gene therapy of cancer.

Materials and Methods

A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel.

Results

The TfRscFv-targeting cationic immunolipoplex had a size of 60–100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival.

Conclusions

This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of the drug, correspondingly lessening the severe side effects, while decreasing the possibility of recurrence. Moreover, this approach is applicable to both primary and recurrent tumors, and more significantly, metastatic disease. The TfRscFv-targeting of cationic immunolipoplexes is a promising method of tumor targeted gene delivery that can be used for systemic gene therapy of cancer with the potential to critically impact the clinical management of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meng RD, EL-Deiry WS. (1999) Tumor suppressor genes as targets for cancer gene therapy. In: Lattime EC and Gerson SL, eds., Gene Therapy of Cancer, Academic Press, San Diego, CA. pp. 3–20.

    Google Scholar 

  2. Zhang W, Fujiwara T, Grimm EA, Roth JA. (1997) Advances in Cancer Gene Therapy. Adv. Pharmacol. 32: 289–333.

    Article  Google Scholar 

  3. Chen QR, Mixson JA. (1998) Systemic gene therapy with p53 inhibits breast cancer: recent advances and therapeutic implications. Front. Biosci. 3: D997–D1004.

    Article  CAS  PubMed  Google Scholar 

  4. Chang EH, XuL, Pirollo KF. (2000) Targeted p53 Gene Therapy Mediated Radiosensitization and Chemosensitization. In: Gutking JS ed. Signaling Networks and Cell Cycle Control: The Molecular Basis of Cancer and Other Diseases. The Humana Press Inc., Totowa, NJ. pp. 519–536.

    Chapter  Google Scholar 

  5. Huang L, Viroonchatapan E. (1999) Introduction. In: Non-viral Vectors for Gene Therapy. Huang L, Hung MC and Wagner E. eds., Academic Press, San Diego, CA. pp. 3–22.

    Chapter  Google Scholar 

  6. Ledley FD. (1995) Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum. Gene Ther. 6: 1129–1144.

    Article  CAS  PubMed  Google Scholar 

  7. Felgner PL, Tsai YJ, Sukhu L, et al. (1995) Improved cationic lipid formulations for in vivo gene therapy. Ann. NY Acad. Sci. 772: 126–139.

    Article  CAS  PubMed  Google Scholar 

  8. Felgner PL. (1999) Progress in gene delivery research and development. In: Non-viral Vectors for Gene Therapy. Huang L, Hung MC and Wagner E. eds., Academic Press, San Diego, CA. pp. 26–38.

    Google Scholar 

  9. Christiano RJ, Curiel DT. (1996) Strategies to accomplish gene therapy via the receptor-mediated endocytosis pathways. Cancer Gene Ther. 3: 457–497.

    Google Scholar 

  10. Keer HN, Kozlowski JM, Tsai MC. (1990) Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and and in vivo. J. Urol. 143: 381–385.

    Article  CAS  PubMed  Google Scholar 

  11. Rossi MC, Zetter BR. (1992) Selective stimulation of prostate carcinoma cell proliferation by transferrin. Proc. Natl. Acad. Sci. USA 89: 6197–6201.

    Article  CAS  PubMed  Google Scholar 

  12. Elliott RL, Elliott MC, Wang F, Head JF. (1993) Breast carcinoma and the role of iron metabolism. a cytochemical, tissue culture, and ultrastructural study. Ann. NY Acad. Sci. 698: 159–166.

    Article  CAS  PubMed  Google Scholar 

  13. Miyamoto T, Tanaka N, Eishi Y, Amagasa, T. (1994) Transferrin receptor in oral tumors. Int. J. Oral Maxillofac. Surg. 23: 430–433.

    Article  CAS  PubMed  Google Scholar 

  14. Thorstensen K, Romslo I. (1993) The Transferrin receptor: its diagnostic value and its potential as therapeutic target. Scand. J. Clin. Lab. Invest. Suppl. 215: 113–120.

    Article  CAS  PubMed  Google Scholar 

  15. Xu L, Pirollo KF, Chang EH. (1997) Transferrin-liposome-mediated p53 sensitization of squamous cell carcinoma of the head and neck radiationin vitro. Hum. Gene Ther. 8: 467–475.

    Article  CAS  PubMed  Google Scholar 

  16. Xu L, Pirollo KF, Tang W, Rait A, Chang EH. (1999) Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum. Gene Ther. 10: 2941–2952.

    Article  CAS  PubMed  Google Scholar 

  17. Keinanen K, Laukkanen ML. (1994) Biosynthetic lipid-tagging of antibodies. FEBS Letters 346: 123–126.

    Article  CAS  PubMed  Google Scholar 

  18. de Kruif J, Storm G, van Bloois L, Logtenberg T. (1996) Biosynthetically lipid-modified human scFv fragments from phage display libraries as targeting molecules for immunoliposomes. FEBS Letters 399: 232–236.

    Article  PubMed  Google Scholar 

  19. Haynes BF, Hemler M, Cotner T, et al. (1981) Characterization of a monoclonal antibody (5E9) that defines a human cell surface antigen of cell activation. J. Immunol. 127: 347–351.

    PubMed  CAS  Google Scholar 

  20. Xu L, Pirollo KF, Rait A, Murray AL, Chang EH. (1999) Systemic p53 Gene Therapy In Combination with Radiation Results in Human Tumor Regression. Tumor Targeting 4: 92–104.

    CAS  Google Scholar 

  21. Chen L, Agrawal S, Zhou W, Zhang R, Chen J. (1998) Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc. Natl. Acad. Sci. USA 95: 195–200.

    Article  CAS  PubMed  Google Scholar 

  22. Leonessa F, Green D, Licht T, et al. (1996) MDA435/LCC6 and MDA435/LCC6MDR1: ascites models of human breast cancer. Br. J. Cancer. 73: 154–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laukkanen ML, Teeri TT, Keinanen K. (1993) Lipid-tagged antibodies: bacterial expression and characterization of a lipoprotein-single-chain antibody fusion protein. Protein. Eng. 6: 449–454.

    Article  CAS  PubMed  Google Scholar 

  24. Laukkanen ML, Alfthan K, Keinanen K. (1994) Functional immunoliposomes harboring a biosynthetically lipid-tagged single-chain antibody. Biochemistry 33: 11664–11670.

    Article  CAS  PubMed  Google Scholar 

  25. New RRC. (1989) Preparation of liposomes. In: Liposomes-a practical approach. New RRC, Ed., IRL Press, Oxford, UK. pp. 33–104.

    Google Scholar 

  26. Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE Jr, Ryan P, Chiang Y, Chang EH. (1997) p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene 14: 1735–1746.

    Article  CAS  PubMed  Google Scholar 

  27. Wagner E. (1999) Ligand-polycation conjugates for receptortargeted gene transfer. In: Non-viral Vectors for Gene Therapy. Huang L, Hung MC and Wagner E. eds., Academic Press, San Diego, CA. pp. 208–227.

    Google Scholar 

  28. Pirollo KF, Xu L, Chang EH. (2000) Non-viral gene delivery for p53. Curr. Opin. Mol. Ther. 2: 168–175.

    PubMed  CAS  Google Scholar 

  29. Allen TM, Hansen CB, Zalipsky S. (1995) Antibody-targeted stealth liposomes. In: Stealth Liposomes, Lasic D., and Martin F. (Eds), CRC Press, Boca Raton, Florida. pp. 233–244.

    Google Scholar 

  30. Hansen CB, Kao GY, Moase EH, Zalipsky S, Allen TM. (1995) Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta. 1239: 133–144.

    Article  PubMed  Google Scholar 

  31. Mastrobattista E, Koning GA, Storm G. (1999) Immunoliposomes for the targeted delivery of antitumor drugs. Adv. Drug Deliv. Rev. 40: 103–127.

    Article  CAS  PubMed  Google Scholar 

  32. Park JW, Hong K, Carter P, et al. (1995) Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc. Natl. Acad. Sci. USA 92: 1327–1331.

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki S, Inoue K, Hongoh A, Hashimoto Y, Yamazoe Y. (1997) Modulation of doxorubicin resistance in a doxorubicin-resistant human leukaemia cell by an immunoliposome targeting transferring receptor. Br. J. Cancer 76: 83–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huwyler J, Yang J, Pardridge WM. (1997) Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J. Pharmacol. Exp. Ther. 282: 1541–1546.

    PubMed  CAS  Google Scholar 

  35. Weinberg ED. (1992) Roles of iron in neoplasia. Promotion, prevention, and therapy. Biol. Trace Elements Res. 34: 123–140.

    Article  CAS  Google Scholar 

  36. Pelegrin M, Marin M, Noel D, Piechaczyk M. (1998) Genetically engineered antibodies in gene transfer and gene therapy. Hum. Gene Ther. 9: 2165–2175.

    Article  CAS  PubMed  Google Scholar 

  37. Huang SK, Martin FJ, Friend DS, Papahadjopoulos D. (1995) Mechanism of stealth liposome accumulation in some pathological tissues. In: Stealth Liposomes, Lasic D., and Martin F. eds, CRC Press, Boca Raton, Florida. pp. 119–125.

    Google Scholar 

  38. Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM. (1997) Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J. Physiol. 504: 747–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ozbun MA, Butel JS. (1995) Tumor suppressor p53 mutations and breast cancer: a critical analysis. Adv Cancer Res. 66: 71–141.

    Article  CAS  PubMed  Google Scholar 

  40. Allred DC, Elledge R, Clark GM, Fuqua SA. (1994) The p53 tumor-suppressor gene in human breast cancer. Cancer Treat. Res. 71: 63–77.

    Article  CAS  PubMed  Google Scholar 

  41. Kerr JF, Winterford CM & Harmon BV. (1994) Apoptosis: Its significance in cancer and cancer therapy. Cancer 7: 2013–2026.

    Article  Google Scholar 

  42. Yeung TK, Germond C, Chen X, Wang Z. (1999) The mode of action of taxol: apoptosis at low concentration and necrosis at high concentration. Biochem. Biophys. Res. Commun. 263: 398–404.

    Article  CAS  PubMed  Google Scholar 

  43. Lowe SW. (1995) Cancer therapy and p53. Curr. Opin. Oncol. 7: 547–553.

    Article  CAS  PubMed  Google Scholar 

  44. Xu L, Pirollo KF, Chang EH. (2001) Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J. Control. Release 74: 115–128.

    Article  CAS  PubMed  Google Scholar 

  45. Hortobagyi GN. (1999) Recent progress in the clinical development of docetaxel (Taxotere). Semin. Oncol. 26: 32–36.

    PubMed  CAS  Google Scholar 

  46. Zeng S, Chen YZ, Fu L, Johnson KR, Fan W. (2000) In vitro evaluation of schedule-dependent interactions between docetaxel and doxorubicin against human breast and ovarian cancer cells. Clin. Cancer Res. 6: 3766–3773.

    PubMed  CAS  Google Scholar 

  47. Miyake H, Hara S, Arakawa S, Kamidono S, Hara I. (2001) Overexpression of Bcl-2 regulates sodium butyrate- and/or docetaxel-induced apoptosis in human bladder cancer cells both in vitro and in vivo. Int. J. Cancer 93: 26–32.

    Article  CAS  PubMed  Google Scholar 

  48. Muenchen HJ, Poncza PJ, Pienta KJ. (2001) Different docetaxel-induced apoptotic pathways are present in prostate cancer cell lines LNCaP and PC-3. Urology 57: 366–370.

    Article  CAS  PubMed  Google Scholar 

  49. Khayat D, Chollet P, Antoine EC, Monfardini S, Ambrosini G, Benhammouda A, Mazen MF, Sorio R, Borg-Olivier O, Riva A, Ramazeilles C, Azli N. (2001) Phase II study of sequential administration of docetaxel followed by doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer. J. Clin. Oncol. 19: 3367–3375.

    Article  CAS  PubMed  Google Scholar 

  50. Viens P, Roche H, Kerbrat P, Fumoleau P, Guastalla JP, Delozier T. (2001) Epirubicin-docetaxel combination in firstline chemotherapy for patients with metastatic breast cancer: final results of a dose-finding and efficacy study. Am. J. Clin. Oncol. 24: 328–335.

    Article  CAS  PubMed  Google Scholar 

  51. Hainsworth JD, Burris HA 3rd, Yardley DA, Bradof JE, Grimaldi M, Kalman LA, Sullivan T, Baker M, Erland JB, Greco FA. (2001) Weekly docetaxel in the treatment of elderly patients with advanced breast cancer: a Minnie Pearl Cancer Research Network phase II trial. J. Clin. Oncol. 19: 3500–3505.

    Article  CAS  PubMed  Google Scholar 

  52. Liu TJ, Zhang WW. Taylor DL, Roth JA, Goepfert H, Clayman GL. (1994) Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 54: 3662–3667.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. David Fitzgerald for providing the plasmid pDFH2T-vecOK containing the TfRscFv cDNA, Dr. John de Kruif for providing the expression vector pLP1, Dr. Arnold Levine for providing the plasmid pBP100, Ms. Tina Wilson and Kelle Reames for assistance with the in vivo animal studies, Dr. Wei-Qun Huang for assistance with Western analysis, Dr. Karen Creswell for assistance with flow cytometry analysis, and Leanne Sleer for assistance with the manuscript. This work was supported in part by NCI grant R01 CA45158 (E. C.) and NCI STTR Phase I grant R41 CA80449 (E. C.), and SynerGene Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther H. Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Tang, WH., Huang, CC. et al. Systemic p53 Gene Therapy of Cancer with Immunolipoplexes Targeted by Anti-Transferrin Receptor scFv. Mol Med 7, 723–734 (2001). https://doi.org/10.1007/BF03401962

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401962

Keywords

Navigation