Skip to main content
Log in

ARP, A Peptide Derived from the Stress-Associated Acetylcholinesterase Variant, Has Hematopoietic Growth Promoting Activities

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Psychological stress induces rapid and long-lasting changes in blood cell composition, implying the existence of stress-induced factors that modulate hematopoiesis. Here we report the involvement of the stress-associated “readthrough” acetylcholinesterase (AChE-R) variant, and its 26 amino acid C-terminal domain (ARP) in hematopoietic stress responses.

Materials and Methods

We studied the effects of stress, cortisol, antisense oligonucleotides to AChE, and synthetic ARP on peripheral blood cell composition and clonogenic progenitor status in mice under normal and stress conditions, and on purified CD341 cells of human origin. We employed in situ hybridization and immunocytochemical staining to monitor gene expression, and 5-bromo-2-deoxyuridine (BrdU), primary liquid cultures, and clonogenic progenitor assays to correlate AChE-R and ARP with proliferation and differentiation of hematopoietic progenitors.

Results

We identified two putative glucocorticoid response elements in the human ACHE gene encoding AChE. In human CD341 hematopoietic progenitor cells, cortisol elevated AChE-R mRNA levels and promoted hematopoietic expansion. In mice, a small peptide crossreacting with anti-ARP antiserum appeared in serum following forced swim stress. Ex vivo, ARP was more effective than cortisol and equally as effective as stem cell factor in promoting expansion and differentiation of early hematopoietic progenitor cells into myeloid and megakaryocyte lineages.

Conclusions

Our findings attribute a role to AChE-R and ARP in hematopoietic homeostasis following stress, and suggest the use of ARP in clinical settings where ex vivo expansion of progenitor cells is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jern C, Manhem K, Eriksson E, et al. (1991) Hemostatic responses to mental stress during the menstrual cycle. Thromb. Haemost. 66: 614–618.

    Article  CAS  PubMed  Google Scholar 

  2. Sutor AH. (1995) Thrombocytosis in childhood. Semin. Thromb. Hemost. 21: 330–339.

    Article  CAS  PubMed  Google Scholar 

  3. McEwen BS. (1998) Protective and damaging effects of stress mediators. N. Engl. J. Med. 338: 171–179.

    Article  CAS  PubMed  Google Scholar 

  4. Dygai AM, Shakhov VP, Mikhlenko AV, Goldberg ED. (1991) Role of glucocorticoids in the regulation of bone marrow hemopoiesis in stress reaction. Biomed. Pharmacother. 45: 9–14.

    Article  CAS  PubMed  Google Scholar 

  5. Maruyama S, Minagawa M, Shimizu T, et al. (1999) Administration of glucocorticoids markedly increases the numbers of granulocytes and extrathymic T cells in the bone marrow. Cell Immunol. 194: 28–35.

    Article  CAS  PubMed  Google Scholar 

  6. Lansdorp PM. (1995) Telomere length and proliferation potential of hematopoietic stem cells. J. Cell Sci. 108: 1–6.

    PubMed  CAS  Google Scholar 

  7. Burdach S. (1991) The granulocyte/macrophage-colony stimulating factor (GM-CSF): Basic science and clinical application. Klin. Padiatr. 203: 302–310.

    Article  CAS  PubMed  Google Scholar 

  8. Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA. (1993) Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol. Cell Biol. 13: 841–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dieterlen-Lievre F, Godin I, Pardanaud L. (1997) Where do hematopoietic stem cells come from? Int. Arch. Allergy Immunol. 112: 3–8.

    Article  CAS  PubMed  Google Scholar 

  10. Keller G, Snodgrass R. (1990) Life span of multipotential hematopoietic stem cells in vivo. J. Exp. Med. 171: 1407–1418.

    Article  CAS  PubMed  Google Scholar 

  11. Kaushansky K. (1998) Thrombopoietin and the hematopoietic stem cell. Blood 92: 1–3.

    PubMed  CAS  Google Scholar 

  12. Metcalf D. (1993) The cellular basis for enhancement interactions between stem cell factor and the colony stimulating factors. Stem Cells (Dayt) 11(Suppl 2): 1–11.

    CAS  Google Scholar 

  13. Matthews W, Jordan CT, Gavin M, et al. (1991) A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc. Natl. Acad. Sci. U.S.A. 88: 9026–9030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Small D, Levenstein M, Kim E, et al. (1994) STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD341 human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc. Natl. Acad. Sci. U.S.A. 91: 459–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li CL, Johnson GR. (1994) Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic longterm repopulating cells. Blood 84: 408–414.

    PubMed  CAS  Google Scholar 

  16. Jacobsen SE, Okkenhaug C, Myklebust J, Veiby OP, Lyman SD. (1995) The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with inter-leukin (IL) 11, IL-12, and other hematopoietic growth factors. J. Exp. Med. 181: 1357–1363.

    Article  CAS  PubMed  Google Scholar 

  17. McNiece IK, Langley KE, Zsebo KM. (1991) Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp. Hematol. 19: 226–231.

    PubMed  CAS  Google Scholar 

  18. Bernstein ID, Andrews RG, Zsebo KM. (1991) Recombinant human stem cell factor enhances the formation of colonies by CD341 and CD341 lin-cells, and the generation of colony-forming cell progeny from CD341 lin-cells cultured with interleukin-3, granulocyte colony-stimulating factor, or granu-locyte-macrophage colony-stimulating factor. Blood 77: 2316–2321.

    PubMed  CAS  Google Scholar 

  19. Goldberg ED, Dygai AM, Zakharova O, Shakhov VP. (1990) The modulating influence of enkephalins on the bone marrow haemopoiesis in stress. Folia Biol. 36: 319–331.

    CAS  Google Scholar 

  20. Karpel R, Ben Aziz-Aloya R, Sternfeld M, et al. (1994) Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins. Exp. Cell Res. 210: 268–277.

    Article  CAS  PubMed  Google Scholar 

  21. Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM. (1993) Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41: 31–91.

    Article  CAS  PubMed  Google Scholar 

  22. Lev-Lehman E, Deutsch V, Eldor A, Soreq H. (1997) Immature human megakaryocytes produce nuclear-associated acetylcholinesterase. Blood 89: 3644–3653.

    PubMed  CAS  Google Scholar 

  23. Grisaru D, Lev-Lehman E, Shapira M, et al. (1999) Human osteogenesis involves differentiation-dependent increases in the morphogenically active 3′ alternative splicing variant of acetylcholinesterase. Mol. Cell Biol. 19: 788–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell Physiol. 176: 57–66.

    Article  CAS  PubMed  Google Scholar 

  25. Burstein SA, Adamson JW, Harker LA. (1980) Megakaryocy-topoiesis in culture: Modulation by cholinergic mechanisms. J. Cell Physiol. 54: 201–208.

    Article  Google Scholar 

  26. Paoletti F, Mocali A, Vannucchi AM. (1992) Acetyl-cholinesterase in murine erythroleukemia (Friend) cells: Evidence for megakaryocyte-like expression and potential growth-regulatory role of enzyme activity. Blood 79: 2873–2879.

    PubMed  CAS  Google Scholar 

  27. Seidman S, Sternfeld M, Ben Aziz-Aloya R, et al. (1995) Synaptic and epidermal accumulations of human acetyl-cholinesterase are encoded by alternative 3′-terminal exons. Mol. Cell Biol. 15: 2993–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaufer D, Friedman A, Seidman S, Soreq H. (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393: 373–377.

    Article  CAS  PubMed  Google Scholar 

  29. Shohami E, Kaufer D, Chen Y, et al. (2000) Antisense prevention of neuronal damages following head injury in mice. J. Mol. Med. 78: 228–236.

    Article  CAS  PubMed  Google Scholar 

  30. Sternfeld M, Shoham S, Klein O, et al. (2000) Excess “readthrough” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc. Natl. Acad. Sci. U.S.A. 97: 8647–8652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grisaru D, Deutsch V, Pick M, et al. (1999) Placing the newborn on the maternal abdomen after delivery increases the volume and CD34 cell content in the umbilical cord blood collected: An old maneuver with new applications. Am. J. Obstet. Gynecol. 180: 1240–1243.

    Article  CAS  PubMed  Google Scholar 

  32. Bertolini F, Battaglia M, Pedrazzoli P, et al. (1997) Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood 89: 2679–2688.

    PubMed  CAS  Google Scholar 

  33. Pick M, Nagler A, Grisaru D, Eldor A, Deutsch V. (1998) Expansion of megakaryocyte progenitors from human umbilical cord blood using a new two-step separation procedure. Br. J. Haematol. 103: 639–650.

    Article  CAS  PubMed  Google Scholar 

  34. Deutsch VR, Eldor A, Olson T, et al. (1996) Stem cell factor (SCF) synergizes with megakaryocyte colony stimulating activity in post-irradiated aplastic plasma in stimulating human megakaryocytopoiesis. Med. Oncol. 13: 31–42.

    Article  CAS  PubMed  Google Scholar 

  35. Piacibello W, Sanavio F, Garetto L, et al. (1998) Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation. Leukemia 12: 718–727.

    Article  CAS  PubMed  Google Scholar 

  36. Raina AK, Menn JJ. (1993) Pheromone biosynthesis activating neuropeptide: From discovery to current status. Arch. Insect Biochem. Physiol. 22: 141–151.

    Article  CAS  PubMed  Google Scholar 

  37. Grifman M, Soreq H. (1997) Differentiation intensifies the susceptibility of pheochromocytoma cells to antisense oligodeoxynucleotide-dependent suppression of acetylcholinesterase activity. Antisense Nucleic Acid Drug Dev. 7: 351–359.

    Article  CAS  PubMed  Google Scholar 

  38. Deutsch VR, Olson TA, Nagler A, et al. (1995) The response of cord blood megakaryocyte progenitors to IL-3, IL-6 and aplastic canine serum varies with gestational age. Br. J. Haematol. 89: 8–16.

    Article  CAS  PubMed  Google Scholar 

  39. Kaufer D, Soreq H. (1999) Tracking cholinergic pathways from psychological and chemical stressors to variable neurodeterioration paradigms. Curr. Opin. Neurol. 12: 739–743.

    Article  CAS  PubMed  Google Scholar 

  40. Shapira M, Tur-Kaspa I, Bosgraaf L, et al. (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum. Mol. Genet. 9: 1273–1281.

    Article  CAS  PubMed  Google Scholar 

  41. Darnell JE Jr, Kerr IM, Stark GR. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 11415–11421.

    Article  Google Scholar 

  42. McMahon A, Sabban EL. (1992) Regulation of expression of dopamine beta-hydroxylase in PC12 cells by glucocorticoids and cyclic AMP analogues. J. Neurochem. 59: 2040–2047.

    Article  CAS  PubMed  Google Scholar 

  43. Tronche F, Kellendonk C, Kretz O, et al. (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23: 99–103.

    Article  CAS  PubMed  Google Scholar 

  44. Cella N, Groner B, Hynes NE. (1998) Characterization of Stat5a and Stat5b homodimers and heterodimers and their association with the glucocortiocoid receptor in mammary cells. Mol. Cell Biol. 18: 1783–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Vroede M, Beukering R, Spit M, Jansen M. (1998) Rectal hydrocortisone during stress in patients with adrenal insufficiency. Arch. Dis. Child. 78: 544–547.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Blazsek I, Liu XH, Anjo A, et al. (1995) The hematon, a morphogenetic functional complex in mammalian bone marrow, involves erythroblastic islands and granulocytic cobblestones. Exp. Hematol. 23: 309–319.

    PubMed  CAS  Google Scholar 

  47. Ross ME, Evinger MJ, Hyman SE, et al. (1990) Identification of a functional glucocorticoid response element in the phenylethanolamine N-methyltransferase promoter using fusion genes introduced into chromaffin cells in primary culture. J. Neurosci. 10: 520–530.

    Article  CAS  PubMed  Google Scholar 

  48. Lopez AJ. (1998) Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 32: 279–305.

    Article  CAS  PubMed  Google Scholar 

  49. Xie J, McCobb DP. (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280: 443–446.

    Article  CAS  PubMed  Google Scholar 

  50. Chan RY, Adatia FA, Krupa AM, Jasmin BJ. (1998) Increased expression of acetylcholinesterase T and R transcripts during hematopoietic differentiation is accompanied by parallel elevations in the levels of their respective molecular forms. J. Biol. Chem. 273: 9727–9733.

    Article  CAS  PubMed  Google Scholar 

  51. Tarasenko LM, Grebennikova VF, Tarasenko VV, et al. (1992) The proteinase and alpha 1-antitrypsin activities in the tissues during emotional stress in rabbits. Fiziol. Zh. 38: 115–117.

    PubMed  CAS  Google Scholar 

  52. Gupta P, Blazar BR, Gupta K, Verfaillie CM. (1998) Human CD341 bone marrow cells regulate stromal production of interleukin-6 and granulocyte colony-stimulating factor and increase the colony-stimulating activity of stroma. Blood 91: 3724–3733.

    PubMed  CAS  Google Scholar 

  53. Jazwiec B, Solanilla A, Grosset C, et al. (1998) Endothelial cell support of hematopoiesis is differentially altered by IL-1 and glucocorticoids. Leukemia 12: 1210–1220.

    Article  CAS  PubMed  Google Scholar 

  54. Sussman JL, Harel M, Silman I. (1993) Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs. Chem. Biol. Interact. 87: 187–197.

    Article  CAS  PubMed  Google Scholar 

  55. Satoh T, Aramini JM, Li S, et al. (1997) Bioactive peptide design based on protein surface epitopes. A cyclic heptapeptide mimics CD4 domain 1 CC ′ loop and inhibits CD4 biological function. J. Biol. Chem. 272: 12175–12180.

    Article  CAS  PubMed  Google Scholar 

  56. Livnah O, Stura EA, Johnson DL, et al. (1996) Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A. Science 273: 464–471.

    Article  CAS  PubMed  Google Scholar 

  57. Johnson DL, Farrell FX, Barbone FP, et al. (1998) Identification of a 13 amino acid peptide mimetic of erythropoietin and description of amino acids critical for the mimetic activity of EMP1. Biochemistry 37: 7699–7710.

    Google Scholar 

  58. Cwirla SE, Balasubramanian P, Duffin DJ, et al. (1997) Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 276: 1696–1699.

    Article  CAS  PubMed  Google Scholar 

  59. Conrad PD, Emerson SG. (1998) Ex vivo expansion of hematopoietic cells from umbilical cord blood for clinical transplantation. J. Leukoc. Biol. 64: 147–155.

    Article  CAS  PubMed  Google Scholar 

  60. Galyam N, Grisaru D, Melamed-Book N, Grifman M, Eckstein F, Eldor A, Soreq H. (2001) Complex host cell responses to antisense suppression of ACHE gene expression. Antisense and Nucleic Acid Drug Development in press.

  61. Taniguchi T. (1995) Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268: 251–255.

    Article  CAS  PubMed  Google Scholar 

  62. Jacobson A, Peltz SW. (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65: 693–739.

    Article  CAS  PubMed  Google Scholar 

  63. Schultz JA, Hoffman WE, Albrecht RF. (1993) Sympathetic stimulation with physostigmine worsens outcome from incomplete brain ischemia in rats. Anesthesiology 79: 114–121.

    Article  CAS  PubMed  Google Scholar 

  64. Harmsen P, Rosengren A, Tsipogianni A, Wilhelmsen L. (1990) Risk factors for stroke in middle-aged men in Goteborg, Sweden. Stroke 21: 223–229.

    Article  CAS  PubMed  Google Scholar 

  65. Inestrosa NC, Alarcon R, Arriagada J, Donoso A, Alvarez J. (1993) Platelets of Alzheimer patients: Increased counts and subnormal uptake and accumulation of [14C]5-hydroxytryptamine. Neurosci. Lett. 163: 8–10.

    Article  CAS  PubMed  Google Scholar 

  66. Snowdon DA, Greiner LH, Mortimer JA, et al. (1997) Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277: 813–817.

    Article  CAS  PubMed  Google Scholar 

  67. Brown LM, Blair A, Gibson R, et al. (1990) Pesticide exposure and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res. 50: 6585–6591.

    PubMed  CAS  Google Scholar 

  68. Karpel R, Sternfeld M, Ginzberg D, et al. (1996) Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J. Neurochem. 66: 114–123.

    Article  CAS  PubMed  Google Scholar 

  69. Solter D, Gearhart J. (1999) Putting stem cells to work. Science 283: 1468–1470.

    Article  CAS  PubMed  Google Scholar 

  70. Shamblott MJ, Axelman J, Wang S, et al. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. U.S.A. 95: 13726–13731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283: 534–537.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Haim Gilon (Jerusalem) for preliminary peptide synthesis, to Drs. David Glick and Shlomo Seidman (Jerusalem) and to Dr. Roger Kornberg (Palo Alto) for reviewing this manuscript, and to Ms. Shoshana Baron for her assistance. Support was by the U.S.-Israel Binational Science Foundation (to H.S.) and the B. Adler Fund, the Israel Ministry of Health (to V.D.). D.G. was the incumbent of a research fellowship from the Tel-Aviv Sourasky Medical Center and of a Meirbaum Award, from Tel-Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermona Soreq.

Additional information

The first two authors contributed equally to this investigation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grisaru, D., Deutsch, V., Shapira, M. et al. ARP, A Peptide Derived from the Stress-Associated Acetylcholinesterase Variant, Has Hematopoietic Growth Promoting Activities. Mol Med 7, 93–105 (2001). https://doi.org/10.1007/BF03401943

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401943

Keywords

Navigation