Skip to main content
Log in

Myocardial Postischemic Injury Is Reduced by PolyADPribose Polymerase-1 Gene Disruption

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

PolyADPribose polymerase (PARP) is activated by DNA strand breaks to catalyze the addition of ADPribose groups to nuclear proteins, especially PARP-1. Excessive polyADPribosylation leads to cell death through depletion of NAD+ and ATP.

Materials and Methods

In vivo PARP activation in heart tissue slices was assayed through conversion of [33P]NAD+ into polyADPribose (PAR) following ischemia-reperfusion (I/R) and also monitored by immunohistochemical staining for PAR. Cardiac contractility, nitric oxide (NO), reactive oxygen species (ROS), NAD+ and ATP levels were examined in wild type (WT) and in PARP-1 gene-deleted (PARP-1−/−) isolated, perfused mouse hearts. Myocardial infarct size was assessed following coronary artery occlusion in rats treated with PARP inhibitors.

Results

Ischemia-reperfusion (I/R) augmented formation of nitric oxide, oxygen free radicals and PARP activity. I/R induced decreases in cardiac contractility and NAD+ levels were attenuated in PARP-1−/− mouse hearts. PARP inhibitors reduced myocardial infarct size in rats. Residual polyADPribosylation in PARP-1−/− hearts may reflect alternative forms of PARP.

Conclusions

PolyADPribosylation from PARP-1 and other sources of enzymatic PAR synthesis is associated with cardiac damage following myocardial ischemia. PARP inhibitors may have therapeutic utility in myocardial disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Murcia JM, Niedergang C, Trucco C, et al. (1997) Requirement of poly (ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. U.S.A. 94: 7303–7307.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia, G. (1998) XRCCI is specifically asoociated with poly (ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell Biol. 18: 3563–3571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leist M, Single B, Kunstle G, Volbracht C, Hentze H, Nicotera P. (1997) Apoptosis in the absence of poly-(ADP-ribose) polymerase. Biochem. Biophys. Res. Commun. 233: 518–522.

    Article  CAS  PubMed  Google Scholar 

  4. Wang ZQ, Stingl L, Morrison C, et al. (1997) PARP is important for genomic stability but dispensible in apoptosis. Genes Dev. 11: 2347–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM. (1998) Importance of poly (ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J. Biol. Chem. 273: 33533–33539.

    Article  CAS  PubMed  Google Scholar 

  6. Berger, NA. (1985) Poly (ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101: 4–15.

    Article  CAS  PubMed  Google Scholar 

  7. Pieper AA, Verma A, Zhang J, Snyder, SH. (1999) Poly (ADP-ribose) polymerase, nitric oxide, and cell death. Trends Pharmacol. Sci. 20: 171–181.

    Article  CAS  PubMed  Google Scholar 

  8. Pieper AA, Brat DJ, Krug DK, et al. (1999) Poly (ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. U.S.A. 96: 3059–3064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burkart V, Wang ZQ, Radons J, et al. (1999) Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozotocin. Nat. Med. 5: 314–319.

    Article  CAS  PubMed  Google Scholar 

  10. Masutani M, Suzuki H, Kamada N, et al. (1999) Poly (ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. U.S.A. 96: 2301–2304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eliasson MJL, Sampei K, Mandir AS, et al. (1997) Poly (ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3: 1089–1095.

    Article  CAS  PubMed  Google Scholar 

  12. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly (ADP-ribose) polymerase. J. Cereb. Blood Flow Metab. 17: 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J. (1997) Neuroprotective effects of inhibiting poly (ADP-ribose) synthetase on focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 17: 1137–1142.

    Article  CAS  PubMed  Google Scholar 

  14. Tokime T, Nozaki K, Sugino T, Kikuchi H, Hashimoto N, Ueda, K. (1998) Enhanced poly (ADP-ribosyl)ation after focal ischemia in rat brain. J. Cereb. Blood Flow Metab. 18: 991–997.

    Article  CAS  PubMed  Google Scholar 

  15. Gilad E, Zingarell, B, Salzman AL, Szabo C. (1997) Protection by inhibition of poly (ADP-ribose) synthetase against oxidant injury in cardiac myoblasts In vitro. Mol. Cell Cardiol. 29: 2585–2597.

    Article  CAS  Google Scholar 

  16. Bowes J, Piper J, Thiemermann C. (1998) Inhibitors of the activity of poly (ADP-ribose) syn-thetase reduce the cell death caused by hydrogen peroxide inhuman cardiac myoblasts. Br. J. Pharmacol. 124: 1760–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowes J, McDonald MC, Piper J, Thiemermann C. (1999) Inhibitors of poly (ADP-ribose) synthetase protect rat cardiomyocytes against oxi-dant stress. Cardiovasc. Res. 41: 126–134.

    Article  CAS  PubMed  Google Scholar 

  18. Bowes J, Ruetten H, Martorana PA, Stockhausen H, Thiemermann C. (1998) Reduction of myocardial reperfusion injury by an inhibitor of poly (ADP-ribose) synthetase in the pig. Eur. J. Pharmacol. 359: 143–150.

    Article  CAS  PubMed  Google Scholar 

  19. Zingarelli B, Cuzzocrea S, Zsengeller Z, Salzman AL, Szabo C. (1997) Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc. Res. 36: 205–215.

    Article  CAS  PubMed  Google Scholar 

  20. Thiemermann C, Bowes J, Myint FP, Vane JR. (1997) Inhibition of the activity of poly (ADP-ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 94: 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Docherty JC, Kuzio B, Silvester JA, Bowes J, Thiemermann C. (1999) An inhibitor of poly (ADP-ribose) synthetase activity reduces contractile dysfunction and preserves high energy phosphate levels during reperfusion of the ischaemic rat heart. Br. J. Pharm. 127: 1518–1524.

    Article  CAS  Google Scholar 

  22. Zingarelli B, Salzman AL, Szabo C. (1998) Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83: 85–94.

    Article  CAS  PubMed  Google Scholar 

  23. Grupp IL, Jackson TM, Hake P, Grupp G, Szabo C. (1999) Protection against hypoxia-reoxygenation in the absence of poly (ADP-ribose) syn-thetase in isolated working hearts. J. Mol. Cell Cardiol. 31: 297–303.

    Article  CAS  PubMed  Google Scholar 

  24. Shinobu LA, Jones SG, Jones MM. (1984) Sodium N-methyl-D-glucamine dithiocarbamate and cadmium intoxication. Acta. Pharmacol. Toxicol. (Copenh.) 54: 189–194.

    Article  CAS  Google Scholar 

  25. Wang ZQ, Auer B, Stingl L, et al. (1995) Mice lacking ADPRT and poly (ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9: 509–520.

    Article  CAS  PubMed  Google Scholar 

  26. Wang P, Chen H, Qin H, et al. (1998) Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc. Natl. Acad. Sci. U.S.A. 95: 4556–4560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Curtis MJ, Macleod BA, Walker MJ. (1987) Models for the study of arrhythmias in myocardial ischaemia and infarction: the use of the rat. J. Mol. Cell Cardiol. 19: 399–419.

    Article  CAS  PubMed  Google Scholar 

  28. Fishbein MC, Meerbaum S, Rit J, et al. (1981) Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am. Heart J. 101: 593–600.

    Article  CAS  PubMed  Google Scholar 

  29. Xia Y, Zweier JL. (1995) Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J. Biol. Chem. 270: 18797–18803.

    Article  CAS  PubMed  Google Scholar 

  30. LaPlaca MC, Raghupathi R, Verma A, et al. (1999) Temporal patterns of poly (ADP-ribose) polymerase activation in the cortex following experimental brain injury in the rat. J. Neurochem. 73: 205–213.

    Article  CAS  PubMed  Google Scholar 

  31. Kickhoefer VA, Siva AC, Kedersha NL, et al. (1999) The 193-kD vault protein, VPARP, is a novel poly (ADP-ribose) polymerase. J. Cell Biol. 146: 917–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith S, Giriat I, Schmitt A, deLange T. (1998) Tankyrase, a poly (ADP-ribose) polymerase at human telomeres. Science 282: 1484–1487.

    Article  CAS  PubMed  Google Scholar 

  33. Ame JC, Rolli V, Schreiber V, et al. (1999) PARP-2, a novel mammalian DNA damage-dependent poly (ADP-ribose) polymerase. J. Biol. Chem. 274: 17860–17868.

    Article  CAS  PubMed  Google Scholar 

  34. Shieh WM, Ame JC, Wilson MV, et al. (1998) Poly (ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem. 273: 30069–30072.

    Article  CAS  PubMed  Google Scholar 

  35. Johansson M. (1999) A human poly (ADP-ribose) polymerase gene family (ADPRTL): cDNA cloning of two novel poly (ADP-ribose) polymerase homologues. Genomics 57: 442–445.

    Article  CAS  PubMed  Google Scholar 

  36. Kawamura T, Hanai S, Yokota T, et al. (1998) An alternative form of poly (ADP-ribose) polymerase in Drosophila melanogaster and its ec-topic expression in rat-1 cells. Biochem. Biophys. Res. Commun. 251: 35–40.

    Article  CAS  PubMed  Google Scholar 

  37. Lepiniec L, Babiychuk E, Kushnir S, Van Mantagu M, Inze D. (1995) Characterization of an Arabidopsis thaliana cDNA homologue to animal poly (ADP-ribose) polymerase. FEBS Lett. 364: 103–108.

    Article  CAS  PubMed  Google Scholar 

  38. Babiychuk E, Cottrill PB, Storozhenko S, et al. (1998) Higher plants possess two structurally different poly (ADP-ribose) polymerases. Plant J. 15: 635–645.

    Article  CAS  PubMed  Google Scholar 

  39. Berghammer H, Ebner M, Marksteiner R, Auer B. (1999) pADPRT-2: a novel mammalian polymerizing (ADP-ribosyl)transferase gene related to truncated pADPRT homologues in plants and Caenorhabditis elegans. FEBS Lett. 449: 259–263

    Article  CAS  PubMed  Google Scholar 

  40. Pieper AA, Blackshaw S, Clements EE, et al. (2000) Basal in vivo DNA damage activating poly (ADP-ribosyl)ation reflects glutamatenitric oxide neurotransmission. Proc. Natl. Acad. Sci. U.S.A. 97: 1845–1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szabo C. (1996) DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic. Biol. Med. 21: 855–869.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David K. Krug, Dan Guastella, Penghai Wang, and Dr. S. Sankarapandi for technical assistance, and Jan Fertmann for assistance in data preparation. We thank Dr. Jie Zhang, Dr. Ted Dawson, and Dr. Valina Dawson for advice. We thank NEN Life Science Products for synthesis and donation of [33P] NAD+. We thank Dr. Z. Q. Wang for generously providing PARP-1−/− breeding pairs used to create the colony of mice for this study. This research was supported by NIH grants HL-38324, HL-63744, an American Heart Association Grant in Aid (JLZ), MH-18501, DA-00266, Research Scientist Award DA-00074 (SHS), and NIMH training grant M418 (AAP). One of the authors (SHS) is a consultant, director and member of the scientific advisory board of Guilford Pharmaceuticals, Inc. which is developing drugs based on PARP technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon H. Snyder.

Additional information

Communicated by S. Snyder.

Contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieper, A.A., Walles, T., Wei, G. et al. Myocardial Postischemic Injury Is Reduced by PolyADPribose Polymerase-1 Gene Disruption. Mol Med 6, 271–282 (2000). https://doi.org/10.1007/BF03401936

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401936

Keywords

Navigation