Skip to main content
Log in

Activator Protein-1 Mediates Induced but not Basal Epidermal Growth Factor Receptor Gene Expression

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The epidermal growth factor receptor (EGFR) is expressed at different levels in many cell types and found overexpressed in many cancers. EGFR expression is increased or decreased in response to extracellular stimuli. We examined the effect of increased c-Jun expression on EGFR promoter activity.

Materials and Methods

We used DNAse I foot-printing analysis to determine the binding of activator protein 1 (AP-1) to the promoter region. We also used cotransfection experiments and western blotting analysis to determine the effect of AP-1 family members on EGFR expression.

Results

AP-1 was able to bind to at least seven sites in the EGFR promoter region. Cotransfection of MCF-7 cells with a c-Jun expression vector and the EGFR promoter reporter resulted in a 7-fold increase in promoter activity. JunB, but not c-fos, also enhanced the EGFR promoter activity. An A-Fos—dominant negative shown to inhibit Jun-dependent transactivation was able to prevent c-Jun induction of the promoter activity, but only slightly decreased the basal activity of the promoter. Furthermore, the A-Fos dominant negative was able to inhibit phorbol ester induction of the EGFR promoter. Examination of EGFR expression of MCF-7 stable cell lines that overexpress c-Jun revealed an increase in EGFR expression. Additionally, a cisplatin-resistant cell line, A2780/CP70, which has an increase in AP-1 activity compared with the parental cell line, A2780, was found to have an increase in EGFR level.

Conclusions

These results indicate that AP-1 can act to increase the expression of EGFR and may play a role in upregulation of EGFR in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carpenter G. (1990) Epidermal growth factor. J. Biol. Chem. 265: 7709–7712.

    PubMed  CAS  Google Scholar 

  2. Dittadi R, Donisi PM, Brazzale A, Cappellozza L, Bruscagnin G, Gion M. (1993) Epidermal growth factor receptor in breast cancer. Comparison with nonmalignant breast tissue. Br. J. Cancer 67: 7–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. David M, et al. (1996) STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J. Biol. Chem. 271: 9185–9188.

    Article  CAS  PubMed  Google Scholar 

  4. Merlino GT. (1990) Epidermal growth factor receptor regulation and function. Semin. Cancer Biol. 1: 277–284.

    PubMed  CAS  Google Scholar 

  5. Rajkumar T, Gullick WJ. (1994) The type I growth factor receptors in human breast cancer. Breast Cancer Res. Treat. 29: 3–9.

    Article  CAS  PubMed  Google Scholar 

  6. Downward J, et al. (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307: 521–527.

    Article  CAS  PubMed  Google Scholar 

  7. King, CR, et al. (1985) Human tumor cell lines with EGF receptor gene amplification in the absence of aberrant sized mRNAs. Nucleic Acids Res. 13: 8477–8486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Velu TJ, et al. (1987) Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238: 1408–1410.

    Article  CAS  PubMed  Google Scholar 

  9. Velu TJ, Beguinot L, Vass WC, Zhang K, Pastan I, Lowy DR. (1989) Retroviruses expressing different levels of the normal epidermal growth factor receptor: biological properties and new bioassay. J. Cell Biochem. 39: 153–166.

    Article  CAS  PubMed  Google Scholar 

  10. Di Fiore PP, et al. (1987) Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51: 1063–1070.

    Article  PubMed  Google Scholar 

  11. Moroni MC, et al. (1992) EGF-R antisense RNA blocks expression of the epidermal growth factor receptor and suppresses the transforming phenotype of a human carcinoma cell line. J. Biol. Chem. 267: 2714–2722.

    PubMed  CAS  Google Scholar 

  12. LeMaistre CF, Meneghetti C, Howes L, Osborne CK. (1994) Targeting the EGF receptor in breast cancer treatment. Breast Cancer Res. Treat. 32: 97–103.

    Article  CAS  PubMed  Google Scholar 

  13. Nicholson RI, et al. (1994) Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy. Breast Cancer Res. Treat. 29: 117–125.

    Article  CAS  PubMed  Google Scholar 

  14. Chrysogelos SA, Dickson RB. (1994) EGF receptor expression, regulation, and function in breast cancer. Breast Cancer Res. Treat. 29: 29–40.

    Article  CAS  PubMed  Google Scholar 

  15. Budillon A, et al. (1991) Upregulation of epidermal growth factor receptor induced by alphainterferon in human epidermoid cancer cells. Cancer Res. 51: 1294–1299.

    PubMed  CAS  Google Scholar 

  16. Iacopino F, Ferrandina G, Scambia G, Benedetti-Panici P, Mancuso S, Sica G. (1996) Interferons inhibit EGF-stimulated cell growth and reduce EGF binding in human breast cancer cells. Anticancer Res. 16: 1919–1924.

    PubMed  CAS  Google Scholar 

  17. Ishii S, Xu YH, Stratton RH, Roe BA, Merlino GT, Pastan I. (1985) Characterization and sequence of the promoter region of the human epidermal growth factor receptor gene. Proc. Natl. Acad. Sci. U.S.A. 82: 4920–4924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haley J, Whittle N, Bennet P, Kinchington D, Ullrich A, Waterfield M. (1987) The human EGF receptor gene: structure of the 110 kb locus and identification of sequences regulating its transcription. Oncogene Res. 1: 375–396.

    PubMed  CAS  Google Scholar 

  19. Johnson AC, et al. (1988) Epidermal growth factor receptor gene promoter. Deletion analysis and identification of nuclear protein binding sites. J. Biol. Chem. 263: 5693–5699.

    PubMed  CAS  Google Scholar 

  20. Kageyama R, Merlino GT. (1991) In vitro transcription of epidermal growth factor receptor gene. Methods Enzymol. 198: 242–250.

    Article  CAS  PubMed  Google Scholar 

  21. Kageyama R, Merlino GT, Pastan I. (1988) Epidermal growth factor (EGF) receptor gene transcription. Requirement for Sp1 and an EGF receptor-specific factor. J. Biol. Chem. 263: 6329–6336.

    PubMed  CAS  Google Scholar 

  22. Johnson AC. (1996) Activation of epidermal growth factor receptor gene transcription by phorbol 12-myristate 13-acetate is mediated by activator protein 2. J. Biol. Chem. 271: 3033–3038.

    PubMed  CAS  Google Scholar 

  23. Deb SP, Munoz RM, Brown DR, Subler MA, Deb S. (1994) Wild-type human p53 activates the human epidermal growth factor receptor promoter. Oncogene. 9: 1341–1349.

    PubMed  CAS  Google Scholar 

  24. Ludes-Meyers JH, et al. (1996) Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol. Cell Biol. 16: 6009–6019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheikh MS, et al. (1997) Identification of an additional p53-responsive site in the human epidermal growth factor receptor gene promotor. Oncogene 15: 1095–1101.

    Article  CAS  PubMed  Google Scholar 

  26. Englert C, et al. (1995) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. Embo. J. 14: 4662–4675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kageyama R, Pastan I. (1989) Molecular cloning and characterization of a human DNA binding factor that represses transcription. Cell 59: 815–25.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson AC, Kageyama R, Popescu NC, Pastan I. (1992) Expression and chromosomal localization of the gene for the human transcriptional repressor GCF. J. Biol. Chem. 267: 1689–1694.

    PubMed  CAS  Google Scholar 

  29. Beguinot L, Yamazaki H, Pastan I, Johnson AC. (1995) Biochemical characterization of human GCF transcription factor in tumor cells. Cell Growth Differ. 6: 699–706.

    PubMed  CAS  Google Scholar 

  30. Mu ZM, et al. (1994) PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol. Cell Biol. 14: 6858–6867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vallian S, et al. (1997) Transcriptional repression by the promyelocytic leukemia protein, PML. Exp. Cell Res. 237: 371–382.

    Article  CAS  PubMed  Google Scholar 

  32. Vallian S, et al. (1998) The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol. Cell Biol. 18: 7147–7156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de The H, et al. (1991) The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675–684.

    Article  PubMed  Google Scholar 

  34. Chang KS, et al. (1992) Characterization of a fusion cDNA (RARA/myl) transcribed from the t(15;17) translocation breakpoint in acute promyelocytic leukemia. Mol. Cell Biol. 12: 800–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Angel P, Karin M. (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta. 1072: 129–57.

    PubMed  CAS  Google Scholar 

  36. Bohmann D, et al. (1987) Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238: 1386–1392.

    Article  CAS  PubMed  Google Scholar 

  37. Ryder K, et al. (1988) A gene activated by growth factors is related to the oncogene v-jun. Proc. Natl. Acad. Sci. U.S.A. 85: 1487–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryder K, et al. (1989) jun-D: a third member of the jun gene family. Proc. Natl. Acad. Sci. U.S.A. 86: 1500–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirai SI, et al. (1989) Characterization of junD: a new member of the jun proto-oncogene family. Embo. J. 8: 1433–1439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Miller AD, et al. (1984) c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36: 51–60.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen DR, et al. (1988) fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol. Cell. Biol. 8: 2063–2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nishina H, et al. (1990) Isolation and characterization of fra-2, an additional member of the fos gene family. Proc. Natl. Acad. Sci. U.S.A. 87: 3619–3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zerial M, et al. The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity. Embo. J. 8: 805–813.

  44. Sassone-Corsi P, et al. (1990) Cross-talk in signal transduction: TPA-inducible factor jun/AP-1 activates cAMP-responsive enhancer elements. Oncogene 5: 427–431.

    PubMed  CAS  Google Scholar 

  45. Hai T, et al. (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. U.S.A. 88: 3720–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith LM, et al. (1997) Breast cancer cells have lower activating protein 1 transcription factor activity than normal mammary epithelial cells. Cancer Res. 57: 3046–3054.

    PubMed  CAS  Google Scholar 

  47. Dynan WS, Tjian R. (1983) The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35: 79–87.

    Article  CAS  PubMed  Google Scholar 

  48. Krylov D, et al. (1997) A general method to design dominant negatives to B-HLHZip proteins that abolish DNA binding. Proc. Natl. Acad. Sci. U.S.A. 94: 12274–12279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Q, et al. (1998) Cisplatin induction of ERCC-1 mRNA expression in A2780/CP70 human ovarian cancer cells. J. Biol. Chem. 273: 23419–23425.

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, et al. (1999) Modulation of excision repair cross complementation group 1 (ERCC-1) mRNA expression by pharmacological agents in human ovarian carcinoma cells. Biochem. Pharmacol. 57: 347–353.

    Article  CAS  PubMed  Google Scholar 

  51. Yang L, et al. (1997) Induction of retinoid resistance in breast cancer cells by overexpression of cJun. Cancer Res. 57: 4652–4661.

    PubMed  CAS  Google Scholar 

  52. Johnson AC., Jinno Y, Merlino GT. (1988) Modulation of epidermal growth factor receptor proto-oncogene transcription by a promoter site sensitive to S1 nuclease. Mol. Cell Biol. 8: 4174–4184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rubinstein YR, et al. (1998) Interferon regulatory factor-1 is a major regulator of epidermal growth factor receptor gene expression. FEBS Lett. 431: 268–272.

    Article  CAS  PubMed  Google Scholar 

  54. Hudson LG, Santon JB, Gill GN. (1989) Regulation of epidermal growth factor receptor gene expression. Mol. Endocrinol. 3: 400–408.

    Article  CAS  PubMed  Google Scholar 

  55. Karin M, Liu Z-g, Zandi E. (1997) AP-1 function and regulation. Curr. Opin. Cell Biol. 9: 240–246.

    Article  CAS  PubMed  Google Scholar 

  56. Chen LL, Clawson ML, Bilgrami S, Carmichael G. (1993) A sequence-specific single-stranded DNA-binding protein that is responsive to epidermal growth factor recognizes an S1 nuclease-sensitive region in the epidermal growth factor receptor promoter. Cell Growth Differ. 4: 975–983.

    PubMed  CAS  Google Scholar 

  57. Hou X, et al. (1994) Identification of an epidermal growth factor receptor transcriptional repressor. J. Biol. Chem. 269: 4307–4312.

    PubMed  CAS  Google Scholar 

  58. Reed AL, et al. (1998) Molecular cloning and characterization of a transcription regulator with homology to GC-binding factor. J. Biol. Chem. 273: 21594–21602.

    Article  CAS  PubMed  Google Scholar 

  59. Hudson LG, Thompson KL, Xu J, Gill GN, Santon JB, Glass CK. (1990) Identification and characterization of a regulated promoter element in the epidermal growth factor receptor gene. Proc. Natl. Acad. Sci. U.S.A. 87: 7536–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred C. Johnson Ph.D..

Additional information

Communicated by I. Pastan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A.C., Murphy, B.A., Matelis, C.M. et al. Activator Protein-1 Mediates Induced but not Basal Epidermal Growth Factor Receptor Gene Expression. Mol Med 6, 17–27 (2000). https://doi.org/10.1007/BF03401931

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401931

Keywords

Navigation