Skip to main content
Log in

Expression and Polarization of Intercellular Adhesion Molecule-1 on Human Intestinal Epithelia: Consequences for CD11b/CD18-Mediated Interactions with Neutrophils

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn’s disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-1 (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated.

Materials and Methods

A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions.

Results

While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-γ (IFNγ) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFNγ pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFNγ-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFNγ pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion.

Conclusions

These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar NB, Nostrant TT, Appleman HD. (1982) The histopathologic spectrum of acute self-limited colitis (acute infectious type colitis). Am. J. Surg. Pathol. 6: 523–529.

    Article  CAS  PubMed  Google Scholar 

  2. Yardley JH, Donowitz M. (1977) In: Yardley JH, Morson BC, (eds). The Gastrointestinal Tract. Williams and Wilkins, Baltimore, p. 57.

  3. Nash S, Stafford J, Madara JL. (1987) Effects of polymorphonuclear leukocyte transmigration on barrier function of cultured intestinal epithelial monolayers. J. Clin. Invest. 80: 1104–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nash S, Stafford J, Madara JL. (1988) The selective and superoxide-independent disruption of intestinal epithelial tight junctions during leukocyte transmigration. Lab. Invest. 59: 531–537.

    CAS  PubMed  Google Scholar 

  5. Nash S, Parkos CA, Nusrat A, Delp C, Madara JL. (1991) In vitro model of intestinal crypt abcess: A novel neutrophil-derived secretagogue activity. J. Clin. Invest. 87: 1474–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madara JL, Patapoff TW, Gillece-Castro B, et al. (1993) 5′-AMP is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 epithelial monolayers. J. Clin. Invest. 91: 2320–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parkos CA, Colgan SP, Delp C, Arnaout MA, Madara JL. (1992) Neutrophil migration across a cultured epithelial monolayer elicits a biphasic resistance response representing sequential effects on transcellular and para-cellular pathways. J. Cell Biol. 117: 757–764.

    Article  CAS  PubMed  Google Scholar 

  8. Strohmeier GR, Reppert SM, Lencer WI, Madara JL. (1995) The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J. Biol. Chem. 270: 2387–2394.

    Article  CAS  PubMed  Google Scholar 

  9. Hawker PC, McKay JS, Turnberg LA. (1980) Electrolyte transport across colonic mucosa from patients with inflammatory bowel disease. Gastroenterology 79: 508–511.

    CAS  PubMed  Google Scholar 

  10. Springer TA. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76: 301–314.

    Article  CAS  PubMed  Google Scholar 

  11. Parkos CA, Colgan S, Liang TW, et al. (1996) CD47 mediates post-adhesive events required for neutrophil migration across polarized intestinal epithelia. J. Cell Biol. 132: 437–450.

    Article  CAS  PubMed  Google Scholar 

  12. Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC. (1989) Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J. Clin. Invest. 83: 2008–2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dustin ML, Sanders ME, Shaw S, Springer TA. (1987) Purified lymphocyte function-associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion. J. Exp. Med. 165: 677–692.

    Article  CAS  PubMed  Google Scholar 

  14. Diamond MS, Staunton DE, de Fougerolles AR, et al. (1990) ICAM-1 (CD54): A counter-receptor for Mac-1 (CD11b/CD18). J. Cell Biol. 111: 3129–3139.

    Article  CAS  PubMed  Google Scholar 

  15. Smith CW, Rothlein R, Hughes BJ, et al. (1988) Recognition of an endothelial determinant for CD18-dependent human neutrophil adherence and transendothelial migration. J. Clin. Invest. 82: 1746–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parkos CA, Delp C, Arnaout MA, Madara JL. (1991) Neutrophil migration across a cultured intestinal epithelium: Dependence on a CD11b/CD18-mediated event and enhanced efficiency in the physiologic direction. J. Clin. Invest. 88: 1605–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colgan SP, Parkos CA, McGuirk DK, et al. (1995) Receptors involved in carbohydrate binding modulate intestinal epithelial-neutrophil interactions. J. Biol. Chem. 270: 10531–10539.

    Article  CAS  PubMed  Google Scholar 

  18. Colgan SP, Parkos CA, Delp C, Arnaout MA, Madara JL. (1993) Neutrophil migration across cultured intestinal epithelial monolayers is modulated by epithelial exposure to IFN-γ in a highly polarized fashion. J. Cell Biol. 120: 785–798.

    Article  CAS  PubMed  Google Scholar 

  19. Quiding M, Nordstrom I, Kilander A, et al. (1991) Intestinal immune responses in humans: Oral cholera vaccination induces strong intestinal antibody responses and interferon-gamma production and evokes local immunological memory. J. Clin. Invest. 88: 143–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto M, Fujihashi K, Beagley KW, McGhee JR, Kiyono H. (1993) Cytokine synthesis by intestinal intraepithelial lymphocytes: Both γ/δ T-cell receptor-positive and α/β T-cell receptor-positive T-cells in the G1 phase of the cell cycle produce IFN-γ and IL-5. J. Immunol. 150: 106–114.

    CAS  PubMed  Google Scholar 

  21. Staunton DE, Dustin ML, Erickson HP, Springer TA. (1990) The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus [published errata appear in Cell 1990 Jun 15; 61: 1157 and 1991 Sep 20; 66: following 1311]. Cell 61: 243–254.

    Article  CAS  PubMed  Google Scholar 

  22. Diamond MS, Staunton DE, Marlin SD, Springer TA. (1991) Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65: 961–971.

    Article  CAS  PubMed  Google Scholar 

  23. Crowe SE, Alvarez L, Dytoc M, et al. (1995) Expression of interleukin 8 and CD54 by human gastric epithelium after Helicobacter pylori infection in vitro. Gastroenterology 108: 65–74.

    Article  CAS  PubMed  Google Scholar 

  24. Kelly CP, O’Keane JC, Orellana J, et al. (1992) Human colon cancer cells express ICAM-1 in vivo and support LFA-1-dependent lymphocyte adhesion in vitro. Am. J. Physiol. 263: G864–G870.

    Article  CAS  PubMed  Google Scholar 

  25. Kelly CP, Keates S, Siegenberg D, Linevsky JK, Pothoulakis C, Brady HR. (1994) IL-8 secretion and neutrophil activation by HT-29 colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 30: G991–G997.

    Article  Google Scholar 

  26. Kaiserlian D, Rigal D, Abello J, Revillard JP. (1991) Expression, function and regulation of the intercellular adhesion molecule-1 (ICAM-1) on human intestinal epithelial cell lines. Bur. J. Immunol. 21: 2415–2421.

    CAS  Google Scholar 

  27. Nakamura S, Ohtani H, Watanabe Y, et al. (1993) In situ expression of the cell adhesion molecules in inflammatory bowel disease: Evidence of immunologic activation of vascular endothelial cells. Lab. Invest. 69: 77–85.

    CAS  PubMed  Google Scholar 

  28. Norton J, Sloane JP, al-Saffar N, Haskard DO. (1992) Expression of adhesion molecules in human intestinal graft-versus-host disease. Clin. Exp. Immunol. 87: 231–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tosi MF, Stark JM, Hamedani A, Smith CW, Gruenert DC, Huang YT. (1992) Intercellular adhesion molecule-1 (ICAM-1)-dependent and ICAM-1-independent adhesive interactions between polymorphonuclear leukocytes and human airway epithelial cells infected with parainfluenza virus type 2. J. Immunol. 149: 3345–3349.

    CAS  PubMed  Google Scholar 

  30. Dharmsathaphorn K, Madara JL. (1990) Established intestinal cell lines as model systems for electrolyte transport. Methods Enzymol. 192: 354–389.

    Article  CAS  PubMed  Google Scholar 

  31. Madara JL, Colgan SP, Nusrat A, Delp C, Parkos CA. (1992) A simple approach to measurement of electrical parameters of cultured epithelial monolayers: Use in assessing neutrophil epithelial interactions. J. Tiss. Cult. Meth. 14: 209–216.

    Article  Google Scholar 

  32. Chan PY, Springer TA. (1992) Effect of lengthening lymphocyte function-associated antigen 3 on adhesion to CD2. Mol. Biol. Cell 3: 157–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Diamond MS, Garcia-Aguilar J, Bickford JK, Corbi AL, Springer TA. (1993) The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120: 1031–1043.

    Article  CAS  PubMed  Google Scholar 

  34. Weiser MM. (1973) Intestinal epithelial cell surface membrane glycoprotein synthesis. J. Biol. Chem. 248: 2536–2541.

    CAS  PubMed  Google Scholar 

  35. Henson P, Oades ZG. (1975) Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates. J. Clin. Invest. 56: 1053–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA. (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56: 849–853.

    Article  CAS  PubMed  Google Scholar 

  37. Rothlein R, Dustin ML, Marlin SD, Springer TA. (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137: 1270–1274.

    CAS  PubMed  Google Scholar 

  38. Barnstable CJ, Bodmer WF, Brown G, et al. (1978) Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 14: 9–20.

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez-Madrid F, Krensky AM, Ware CF, et al. (1982) Three distinct antigens associated with human T-lymphocyte-mediated cytolysis: LFA-1, LFA-2 and LFA-3. Proc. Natl. Acad. Sci. U.S.A. 79: 7489–7493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wright SD, Rao PE, van Voorhis WC, et al. (1983) Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 80: 5699–5703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Todd RF, Nadler LM, Schlossman SF. (1981) Antigens on human monocyte identified by monoclonal antibodies. J. Immunol. 126: 1435–1442.

    PubMed  Google Scholar 

  42. Stacker SA, Springer TA. (1991) Leukocyte integrin P150,95 (CD11c/CD18) functions as an adhesion molecule binding to a counter-receptor on stimulated endothelium. J. Immunol. 146: 648–655.

    CAS  PubMed  Google Scholar 

  43. Marlin SD, Springer TA. (1987) Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819.

    Article  CAS  PubMed  Google Scholar 

  44. Klickstein LB, Springer TA. (1995) CD54 (ICAM-1) cluster report. In: Schlossman VSF, Boumsell L, Gilks W, et al. (eds). Leukocyte Typing. Oxford University Press, New York, pp. 1548–1550.

    Google Scholar 

  45. Dustin ML, Garcia-Aguilar J, Hibbs ML, et al. (1989) Structure and regulation of the leukocyte adhesion receptor LFA-1 and its counterreceptors, ICAM-1 and ICAM-2. Cold Spring Harb. Symp. Quant. Biol. 54: 753–765.

    Article  CAS  PubMed  Google Scholar 

  46. Parkos CA, Colgan SP, Bacarra AE, et al. (1995) Intestinal epithelia (T84) possess basolateral ligands for CD11b/CD18 mediated neutrophil adherence. Am. J. Physiol. 268: C472–C479.

    Article  CAS  PubMed  Google Scholar 

  47. Le Bivic A, Sambuy Y, Mostov K, Rodriguez-Boulan E. (1990) Vectorial targeting of an endogenous apical membrane sialoglycoprotein and uvomorulin in MDCK cells. J. Cell Biol. 110: 1533–1539.

    Article  PubMed  Google Scholar 

  48. Lencer WI, Moe S, Rufo PA, Madara JL. (1995) Transcytosis of cholera toxin subunits across model human intestinal epithelia. Proc. Natl. Acad. Sci. U.S.A. 92: 10094–10098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gottardi CJ, Dunbar LA, Caplan MJ. (1995) Biotinylation and assessment of membrane polarity: Caveats and methodological concerns. Am. J. Physiol. 268: F285–F295.

    CAS  PubMed  Google Scholar 

  50. Lisanti MP, Le Bivic A, Saltiel AR, Rodriguez-Boulan E. (1990) Preferred apical distribution of glycosyl-phosphatidyinositol (GPI) anchored proteins: A highly conserved feature of the polarized epithelial cell phenotype. J. Membr. Biol. 113: 155–167.

    Article  CAS  PubMed  Google Scholar 

  51. Kaoutzani P, Parkos CA, Delp-Archer C, Madara JL. (1993) Isolation of plasma membrane fractions from the intestinal epithelial model T84. Am. J. Physiol. 264(Cell Physiol.) 33: C1327–C1335.

    Article  Google Scholar 

  52. Quaranta V. (1990) Epithelial Integrins. Cell Differentiation and Development 32: 361–366.

    Article  CAS  PubMed  Google Scholar 

  53. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. (1986) Induction by IL 1 and interferon-gamma: Tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 137: 245–254.

    CAS  PubMed  Google Scholar 

  54. Dippold W, Wittig B, Schwaeble W, Mayet W, Meyer zum Buschenfelde KH. (1993) Expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in colonic epithelial cells. Gut 34: 1593–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Agace WW, Patarroyo M, Svensson M, Carlemalm E, Svanborg C. (1995) Escherichia coli induces transuroepithelial neutrophil migration by an intercellular adhesion molecule-1-dependent mechanism. Infect. Immun. 63: 4054–4062.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Brockmeyer C, Ulbrecht M, Schendel DJ, et al. (1993) Distribution of cell adhesion molecules (ICAM-1, VCAM-1, ELAM-1) in renal tissue during allograft rejection. Transplantation 55: 610–615.

    Article  CAS  PubMed  Google Scholar 

  57. Chow J, Hartley RB, Jagger C, Dilly SA. (1992) ICAM-1 expression in renal disease. J. Clin. Pathol. 45: 880–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hill PA, Lan HY, Nikolic-Paterson DJ, Atkins RC. (1994) Pulmonary expression of ICAM-1 and LFA-1 in experimental Goodpasture’s syndrome. Am. J. Pathol. 145: 220–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ibrahi L, Dominguez M, Yacoub M. (1993) Primary human adult lung epithelial cells in vitro: Response to interferon-gamma and cytomegalovirus. Immunology 79: 119–124.

    Google Scholar 

  60. Tosi MF, Hamedani A, Brosovich J, Alpert SE. (1994) ICAM-1-independent, CD18-dependent adhesion between neutrophils and human airway epithelial cells exposed in vitro to ozone. J. Immunol. 152: 1935–1942.

    CAS  PubMed  Google Scholar 

  61. Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R. (1990) Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247: 456–459.

    Article  CAS  PubMed  Google Scholar 

  62. Elgavish A. (1993) Effects of Escherichia coli and E. coli lipopolysaccharides on the function of human ureteral epithelial cells cultured in serum-free medium. Infect. Immun. 61: 3304–3312.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Burns AR, Takei F, Doerschuk CM. (1994) Quantitation of ICAM-1 expression in mouse lung during pneumonia. J. Immunol. 153: 3189–3198.

    CAS  PubMed  Google Scholar 

  64. Christensen PJ, Kim S, Simon RH, Toews GB, Paine RD. (1993) Differentiation-related expression of ICAM-1 by rat alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 8: 9–15.

    Article  CAS  PubMed  Google Scholar 

  65. Kang BH, Crapo JD, Wegner C, Letts LG, Chang LY. (1993) Intercellular adhesion molecule-1 expression on the alveolar epithelium and its modification by hyperoxia. Am. J. Respir. Cell Mol. Biol. 9: 350–355.

    Article  CAS  PubMed  Google Scholar 

  66. Dustin ML, Singer KH, Tuck DT, Springer TA. (1988) Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. Exp. Med. 167: 1323–1340.

    Article  CAS  PubMed  Google Scholar 

  67. Vejlsgaard GL, Ralfkiaer E, Avnstorp C, Czajkowski M, Marlin SD, Rothlein R. (1989) Kinetics and characterization of intercellular adhesion molecule-1 (ICAM-1) expression on keratinocytes in various inflammatory skin lesions and malignant cutaneous lymphomas. J. Am. Acad. Dermatol. 20: 782–790.

    Article  CAS  PubMed  Google Scholar 

  68. Nickoloff BJ, Griffiths CE, Barker JN. (1990) The role of adhesion molecules, chemotactic factors, and cytokines in inflammatory and neoplastic skin disease—1990 update. J. Invest. Dermatol. 94: 151S–157S.

    Article  CAS  PubMed  Google Scholar 

  69. Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA. (1995) Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18). J. Cell Biol. 130: 1473–1482.

    Article  CAS  PubMed  Google Scholar 

  70. Madara JL, Parkos CA, Colgan SP, et al. (1992) Cl secretion in a model intestinal epithelium induced by a neutrophil-derived secretagogue. J. Clin. Invest. 89: 1938–1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McCormick BA, Colgan SP, Delp-Archer C, Miller SI, Madara JL. (1993) Salmonella typhimurium attachment to human intestinal epithelial monolayers: Transcellular signalling to subepithelial neutrophils. J. Cell Biol. 123: 895–907.

    Article  CAS  PubMed  Google Scholar 

  72. McCormick BA, Hofman PM, Kim J, Carnes DK, Miller SI, Madara JL. (1995) Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J. Cell Biol. 131: 1599–1608.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research grant from the Crohn’s and Colitis Foundation of America and by National Institutes of Health Grants HL54229, CA31798, CA31799, DK47662, DK7662, DK35932, and DK33506. The authors thank Denice Carnes for excellent tissue culture support and Susan Carlson for assistance in preparing the figures.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkos, C.A., Colgan, S.P., Diamond, M.S. et al. Expression and Polarization of Intercellular Adhesion Molecule-1 on Human Intestinal Epithelia: Consequences for CD11b/CD18-Mediated Interactions with Neutrophils. Mol Med 2, 489–505 (1996). https://doi.org/10.1007/BF03401908

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401908

Navigation