Skip to main content
Log in

A Critical Role of Nitric Oxide in Human Immunodeficiency Virus Type 1-Induced Hyperresponsiveness of Cultured Monocytes

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Human immunodeficiency virus type 1 (HIV-1) infection leads to a general exhaustion of the immune system. Prior to this widespread decline of immune functions, however, there is an evident hyperactivation of the monocyte/macrophage arm. Increased levels of cytokines and other biologically active molecules produced by activated monocytes may contribute to the pathogenesis of HIV disease both by activating expression of HIV-1 provirus and by direct effects on cytokine-sensitive tissues, such as lung or brain. In this article, we investigate mechanisms of hyperresponsiveness of HIV-infected monocytes.

Materials and Methods

The study was performed on monocyte cultures infected in vitro with a monocytetropic strain HTV-1ADA. Cytokine production was induced by stimulation of cultures with lipopolysaccharides (LPS) and measured by ELISA. To study involvement of nitric oxide (NO) in the regulation of cytokine expression, inhibitors of nitric oxide synthase (NOS) or chemical donors of NO were used.

Results

We demonstrate that infection with HIV-1 in vitro primes human monocytes for subsequent activation with LPS, resulting in increased production of proinflammatory cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6). This priming effect can be blocked by Ca2+-chelating agents and by the NOS inhibitor l-NMMA, but not by hemoglobin. It could be reproduced on uninfected monocyte cultures by using donors of NO, but not cGMP, together with LPS.

Conclusions

NO, which is expressed in HIV-1-infected monocyte cultures, induces hyperresponsiveness of monocytes by synergizing with calcium signals activated in response to LPS stimulation. This activation is cGMP independent. Our findings demonstrate the critical role of NO in HIV-1-specific hyperactivation of monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gurram M, Chirmule N, Wang XP, Ponugoti N, Pahwa S. (1994) Increased spontaneous secretion of interleukin 6 and tumor necrosis factor alpha by peripheral blood lymphocytes of human immunodeficiency virus-infected children. Pediatr. Infect. Dis. J. 13: 496–501.

    CAS  PubMed  Google Scholar 

  2. Emilie D, Fior R, Jarrousse B, et al. (1994) Cytokines in HIV infection. Int. J. Immunopharmacol. 16: 391–396.

    Article  CAS  PubMed  Google Scholar 

  3. Clouse KA, Powell D, Washington I, et al. (1989) Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone. J. Immunol. 142: 431–6438.

    CAS  PubMed  Google Scholar 

  4. Poli G, Fauci AS. (1992) The role of monocyte/macrophages and cytokines in the pathogenesis of HIV infection. Pathobiology 60: 246–251.

    Article  CAS  PubMed  Google Scholar 

  5. Poli G, Fauci AS. (1993) Cytokine modulation of HIV expression. Semin. Immunol. 5: 165–173.

    Article  CAS  PubMed  Google Scholar 

  6. Tyor WR, Glass JD, Griffin JW. (1992) Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann. Neurol. 31: 349–360.

    Article  CAS  PubMed  Google Scholar 

  7. Wesselingh SL, Power C, Glass JD, et al. (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann. Neurol. 33: 576–582.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidtmayerova H, Nottet HSLM, Nuovo G, et al. (1996) HIV-1 infection alters chemokine β peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc. Natl. Acad. Sci. U.S.A. 93: 700–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nottet HSLM, Jett M, Flanagan CR, et al. (1995) A regulatory role of astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-α by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J. Immunol. 154: 3567–3581.

    CAS  PubMed  Google Scholar 

  10. Bukrinsky MI, Nottet HS, Schmidtmayerova H, et al. (1995) Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J. Exp. Med. 181: 735–745.

    Article  CAS  PubMed  Google Scholar 

  11. Bredt DS, Snyder SH. (1994) Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63: 175–195.

    Article  CAS  PubMed  Google Scholar 

  12. Lander HM, Sehajpal PK, Novogrodsky A. (1993) Nitric oxide signaling: A possible role for G proteins. J. Immunol. 151: 7182–7187.

    CAS  PubMed  Google Scholar 

  13. Lander HM, Sehajpal P, Levine DM, Novogrodsky A. (1993) Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J. Immunol. 150: 1509–1516.

    CAS  PubMed  Google Scholar 

  14. Peunova N, Enikolopov G. (1993) Amplification of calcium-induced gene transcription by nitric oxide in neuronal cells. Nature 364: 450–453.

    Article  CAS  PubMed  Google Scholar 

  15. Stamler JS. (1995) Redox signaling: Nitrosylation and related target interactions of nitric oxide. Cell 78: 931–936.

    Article  Google Scholar 

  16. Zinetti M, Fantuzzi G, Delgado R, Di Santo E, Ghezzi P, Fratelli M. (1995) Endogenous nitric oxide production by human monocytic cells regulates LPS-induced TNF production. Eur. Cytokine Netw. 6: 45–48.

    CAS  PubMed  Google Scholar 

  17. Padgett EL, Pruett SB. (1992) Evaluation of nitrite production by human monocyte-derived macrophages. Biochem. Biophys. Res. Commun. 186: 775–781.

    Article  CAS  PubMed  Google Scholar 

  18. Moncada S, Palmer RMJ, Higgs EA. (1991) Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109–142.

    CAS  PubMed  Google Scholar 

  19. Lancaster JR. (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 91: 8137–8141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stuehr DJ, Nathan CF. (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169: 1543–1555.

    Article  CAS  PubMed  Google Scholar 

  21. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS. (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79: 1137–1146.

    Article  CAS  PubMed  Google Scholar 

  22. Lee CG, Demarquoy J, Jackson MJ, O’Brien WE. (1994) Molecular cloning and characterization of a murine LPS-inducible cDNA. J. Immunol. 152: 5758–5767.

    CAS  PubMed  Google Scholar 

  23. Letari O, Nicosia S, Chiavaroli C, Vacher P, Schlegel W. (1991) Activation by bacterial lipopolysaccharide causes changes in the cytosolic free calcium concentration in single peritoneal macrophages. J. Immunol. 147: 980–983.

    CAS  PubMed  Google Scholar 

  24. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. U.S.A. 87: 2466–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hurme M, Viherluoto J, Nordstrom T. (1992) The effect of calcium mobilization on LPS-induced IL-1β production depends on the differentiation stage of the monocytes/macrophages. Scand. J. Immunol. 36: 506–511.

    Article  Google Scholar 

  26. Mulsch A, Luckhoff A, Pohl U, Busse R, Bassenge E. (1989) LY-83583 (6-amilino-5,8-quinolinedione) blocks nitro vasodilator-induced cyclic GMP increases and inhibition of platelet activation. Naunyn Schmiedeberg’s Arch. Pharmacol. 340: 119–125.

    CAS  Google Scholar 

  27. Croen KD. (1993) Evidence for an antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J. Clin. Invest. 91: 2446–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karupiah G, Xie QW, Buller RM, Nathan C, Duarte C, MacMicking JD. (1993) Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 261: 1445–1448.

    Article  CAS  PubMed  Google Scholar 

  29. Akarid K, Sinet M, Desforges B, Gougerot-Pocidalo MA. (1995) Inhibitory effect of nitric oxide on the replication of a murine retrovirus in vitro and in vivo. J. Virol. 69: 7001–7005.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schneemann M, Schoedon G, Hofer S, Blau N, Guerrero L, Schaffner A. (1993) Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J. Infect. Dis. 167: 1358–1363.

    Article  CAS  PubMed  Google Scholar 

  31. Lorsbach RB, Murphy WJ, Lowenstein CJ, Snyder SH, Russell SW. (1993) Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between in-terferon-gamma and lipopolysaccharide. J. Biol. Chem. 268: 1908–1913.

    CAS  PubMed  Google Scholar 

  32. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. (1993) Mechanisms of nitric-oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13: 2651–2661.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank K. Manogue for critical reading of the manuscript and helpful comments, and A. Cerami for continued encouragement and support. This work was supported in part by the AmFAR Grant 02059-15-RGR (MB) and by funds from The Picower Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukrinsky, M., Schmidtmayerova, H., Zybarth, G. et al. A Critical Role of Nitric Oxide in Human Immunodeficiency Virus Type 1-Induced Hyperresponsiveness of Cultured Monocytes. Mol Med 2, 460–468 (1996). https://doi.org/10.1007/BF03401905

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401905

Navigation