Skip to main content
Log in

Oligodeoxynucleotides Enhance Lipopolysaccharide-Stimulated Synthesis of Tumor Necrosis Factor: Dependence on Phosphorothioate Modification and Reversal by Heparin

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Specific inhibition of target proteins by antisense oligodeoxynucleotides is an extensively studied experimental approach. This technique is currently being tested in clinical trials applying phosphorothioate-modified oligonucleotides as therapeutic agents. These polyanionic molecules, however, may also exert non–antisense-mediated effects.

Materials and Methods

We examined the influence of oligonucleotides on lipopolysaccharide (LPS)–stimulated tumor necrosis factor α (TNFα) synthesis in freshly isolated human peripheral blood mononuclear cells. Oligonucleotides (18 mer) with different degrees of phosphorothioate modification were studied.

Results

The addition of phosphorothioate oligonucleotides (5 µM) caused amplification of TNF synthesis of up to 410% compared with the control with LPS alone. Without LPS stimulation, phosphorothioate oligonucleotides did not induce TNF production. We demonstrate that the enhancement of LPS-stimulated TNF production by phosphorothioate oligonucleotides does not rely on the intracellular presence of oligonucleotides and is not mediated by LPS contamination. Partially phosphorothioate-modified oligonucleotides and unmodified oligonucleotides did not increase TNF synthesis. High concentrations of the polyanion heparin reversed the oligonucleotide-induced enhancement of TNF synthesis.

Conclusions

The data suggest that amplification of TNF synthesis may be caused by binding of the polyanionic phosphorothioate oligonucleotide to cationic sites on the cell surface. Such binding sites have been proposed for polyanionic glycoaminoglycans of the extracellular matrix, which have also been described to augment LPS-stimulated TNF synthesis. The present results are relevant to all in vitro studies attempting to influence protein synthesis in monocytes by using phosphorothioate oligonucleotides. The significance of our findings for in vivo applications of phosphorothioates in situations where there is a stimulus for TNF synthesis, such as in sepsis, should be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
FIG. 4
Fig. 5

Similar content being viewed by others

References

  1. Askari FK, McDonnell WM. (1996) Antisense-oligonucleotide therapy. N. Engl. J. Med. 334: 316–318.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma HW, Narayanan R. (1995) The therapeutic potential of antisense oligonucleotides. Bioessays 17: 1055–1063.

    Article  CAS  PubMed  Google Scholar 

  3. Stein CA, Narayanan R. (1994) Antisense oligodeoxynucleotides. Curr. Opin. Oncol. 6: 587–594.

    Article  CAS  PubMed  Google Scholar 

  4. Wagner RW. (1994) Gene inhibition using antisense oligodeoxynucleotides. Nature 372: 333–335.

    Article  CAS  PubMed  Google Scholar 

  5. Rossi JJ. (1995) Therapeutic antisense and ribozymes. Br. Med. Bull. 51: 217–225.

    Article  CAS  PubMed  Google Scholar 

  6. Kitajima I, Shinohara T, Bilakovics J, Brown DA, Xu X, Nerenberg M. (1992) Ablation of transplanted HTLV-I tax-transformed tumors in mice by antisense inhibition of NF-κB. Science 258: 1792–1795.

    Article  CAS  PubMed  Google Scholar 

  7. Higgins KA, Perez JR, Coleman TA, et al. (1993) Antisense inhibition of the p65 sub-unit of NF-κB blocks tumorigenicity and causes tumor regression. Proc. Natl. Acad. Sci. U.S.A. 90: 9901–9905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwab G, Chavany C, Duroux I, et al. (1994) Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras–mediated cell proliferation and tumorigenicity in nude mice. Proc. Natl. Acad. Sci. U.S.A. 91: 10460–10464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skorski T, Nieborowska SM, Nicolaides NC, et al. (1994) Suppression of Philadelphia1 leukemia cell growth in mice by bcr-abl antisense oligodeoxynucleotide. Proc. Natl. Acad. Sci. U.S.A. 91: 4504–4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Offensperger WB, Offensperger S, Walter E, et al. (1993) In vivo inhibition of duck hepatitis B virus replication and gene expression by phosphorothioate-modified antisense oligodeoxynucleotides. EMBO J. 12: 1257–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morishita R, Gibbons GH, Ellison KE, et al. (1994) Intimai hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. J. Clin. Invest. 93: 1458–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bayever E, Iversen PL, Bishop MR, et al. (1993) Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p53 for acute myelogenous leukemia and myelodysplastic syndrome: Initial results of a phase I trial. Antisense Res. Dev. 3: 383–390.

    Article  CAS  PubMed  Google Scholar 

  13. Nichols GL. (1995) Antisense oligodeoxynucleotides as therapeutic agents for chronic myelogenous leukemia. Antisense Res. Dev. 5: 67–69.

    Article  CAS  PubMed  Google Scholar 

  14. Gewirtz AM. (1994) Treatment of chronic myelogenous leukemia (CML) with c-myb antisense oligodeoxynucleotides. Bone Marrow Transplant. 14: S57–S61.

    PubMed  Google Scholar 

  15. Zhang R, Yan J, Shahinian H, et al. (1995) Pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjects. Clin. Pharmacol. Ther. 58: 44–53.

    Article  CAS  PubMed  Google Scholar 

  16. Cohen J. (1995) AIDS therapy. New hope against blindness. Science 268: 368–369.

    Article  CAS  PubMed  Google Scholar 

  17. Hawkins JW. (1995) Oligonucleotide therapeutics: Coming’ round the clubhouse turn. Antisense Res. Dev. 5: 1.

    Article  CAS  PubMed  Google Scholar 

  18. Gura T. (1995) Antisense has growing pains. Science 270: 575–577.

    Article  CAS  PubMed  Google Scholar 

  19. Stein CA. (1995) Does antisense exist? Nature Medicine 1: 1119–1121.

    Article  CAS  PubMed  Google Scholar 

  20. Jansen B, Wadl H, Inoue SA, et al. (1995) Phosphorothioate oligonucleotides reduce melanoma growth in a SCID-hu mouse model by a nonantisense mechanism. Antisense Res. Dev. 5: 271–277.

    Article  CAS  PubMed  Google Scholar 

  21. Krieg AM, Yi AK, Matson S, et al. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549.

    Article  CAS  PubMed  Google Scholar 

  22. Chavany C, Connell Y, Neckers L. (1995) Contribution of sequence and phosphorothioate content to inhibition of cell growth and adhesion caused by c-myc antisense oligomers. Mol. Pharmacol. 48: 738–746.

    CAS  PubMed  Google Scholar 

  23. Obrien SG, Kirkland MA, Melo JV, et al. (1994) Antisense BCR-ABL oligomers cause non-specific inhibition of chronic myeloid leukemia cell lines. Leukemia 8: 2156–2162.

    CAS  Google Scholar 

  24. Bøyum A. (1968) Isolation of mononuclear cells and granulocytes from human blood (paper IV). Scand. J. Clin. Lab. Invest. 21: 77–89, 107–109.

    Article  Google Scholar 

  25. Endres S, Fülle HJ, Sinha B, et al. (1991) Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-α and interleukin-1β by human mononuclear cells. Immunology 72: 56–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pennica D, Nedwin GE, Hayflick JS, et al. (1984) Human tumour necrosis factor: Precursor structure, expression and homology to lymphotoxin. Nature 312: 724–729.

    Article  CAS  PubMed  Google Scholar 

  27. Nedwin GE, Naylor SL, Sakaguchi AY, et al. (1985) Human lymphotoxin and tumor necrosis factor genes: Structure, homology and chromosomal localization. Nucleic Acids Res. 13: 6361–6373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Breslauer KJ, Frank R, Blocker H, Markey LA. (1986) Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. U.S.A. 83: 3746–3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van der Meer JW, Endres S, Lonnemann G, et al. (1988) Concentrations of immunore-active human tumor necrosis factor α produced by human mononuclear cells in vitro. J. Leukocyte Biol. 43: 216–223.

    Article  PubMed  Google Scholar 

  30. Perez JR, Li Y, Stein CA, Majumder S, van Oorschot A, Narayanan R. (1994) Sequence-independent induction of Sp1 transcription factor activity by phosphorothioate oligodeoxynucleotides. Proc. Natl. Acad. Sci. U.S.A. 91: 5957–5961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weidner DA, Valdez BC, Henning D, Greenberg S, Busch H. (1995) Phosphorothioate oligonucleotides bind in a non sequence-specific manner to the nucleolar protein c23/nucleolin. FEBS Lett. 366: 146–150.

    Article  CAS  PubMed  Google Scholar 

  32. Bergan RC, Kyle E, Connell Y, Neckers L. (1995) Inhibition of protein-tyrosine kinase activity in intact cells by the aptameric action of oligodeoxynucleotides. Antisense Res. Dev. 5: 33–38.

    Article  CAS  PubMed  Google Scholar 

  33. Chang NS, Intrieri C, Mattison J, Armand G. (1994) Synthetic polysulfated hyaluronic acid is a potent inhibitor for tumor necrosis factor production. J. Leukoc. Biol. 55: 778–784.

    Article  CAS  PubMed  Google Scholar 

  34. Hershkoviz R, Gilat D, Miron S, et al. (1993) Extracellular matrix induces tumour necrosis factor–α secretion by an interaction between resting rat CD4+ T cells and macrophages. Immunology 78: 50–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pacifici R, Basilico C, Roman J, Zutter MM, Santoro SA, McCracken R. (1992) Collagen-induced release of interleukin 1 from human blood mononuclear cells. Potentiation by fibronectin binding to the alpha 5 beta 1 integrin. J. Clin. Invest. 89: 61–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dawes J. (1993) Interactions of heparins in the vascular environment. Haemostasis 1: 212–219.

    Google Scholar 

  37. Leung L, Saigo K, Grant D. (1989) Heparin binds to human monocytes and modulates their procoagulant activities and secretory phenotypes. Effects of histidine-rich glycoprotein. Blood 73: 177–184.

    CAS  PubMed  Google Scholar 

  38. Stein CA, Cheng YC. (1993) Antisense oligonucleotides as therapeutic agents—Is the bullet really magical? Science 261: 1004–1012.

    Article  CAS  PubMed  Google Scholar 

  39. Schindler R, Clark BD, Dinarello CA. (1990) Dissociation between interleukin-1 beta mRNA and protein synthesis in human peripheral blood mononuclear cells. J. Biol. Chem. 265: 10232–10237.

    CAS  PubMed  Google Scholar 

  40. Haskill S, Johnson C, Eierman D, Becker S, Warren K. (1988) Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J. Immunol. 140: 1690–1694.

    CAS  PubMed  Google Scholar 

  41. Ekre HP, Naparstek Y, Lider O, et al. (1992) Anti-inflammatory effects of heparin and its derivatives: Inhibition of complement and of lymphocyte migration. Adv. Exp. Med. Biol. 313: 329–340.

    Article  CAS  PubMed  Google Scholar 

  42. Galbraith WM, Hobson WC, Giclas PC, Schechter PJ, Agrawal S. (1994) Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res. Dev. 4: 201–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Andreas Eigler and Dr. Jochen Möller for helpful discussion and Christiane Haslberger for excellent technical assistance. This work was made possible by Grant 93.0422 from the Wilhelm Sander-Stiftung.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, G., Krug, A., Waller-Fontaine, K. et al. Oligodeoxynucleotides Enhance Lipopolysaccharide-Stimulated Synthesis of Tumor Necrosis Factor: Dependence on Phosphorothioate Modification and Reversal by Heparin. Mol Med 2, 429–438 (1996). https://doi.org/10.1007/BF03401902

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401902

Navigation