Skip to main content
Log in

Nitric Oxide Production and Nitric Oxide Synthase Type 2 Expression by Human Mononuclear Phagocytes: A Review

  • Minireview
  • Published:
Molecular Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Moncada S, Higgs A. (1993) The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329: 2002–2012.

    Article  PubMed  CAS  Google Scholar 

  2. Bredt DS, Snyder SH. (1994) Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63: 175–195.

    Article  CAS  PubMed  Google Scholar 

  3. Clancy RM, Abramson SB. (1995) Nitric oxide—a novel mediator of inflammation [Review]. Proc. Soc. Exp. Biol. Med. 210: 93–101.

    Article  PubMed  CAS  Google Scholar 

  4. Michel T, Feron O. (1997) Nitric oxide synthases—which, where, how, and why. J. Clin. Invest. 100: 2146–2152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nathan C, Xie QW. (1994) Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 269: 13725–13728.

    PubMed  CAS  Google Scholar 

  6. Macmicking J, Xie QW, Nathan C. (1997) Nitric oxide and macrophage function [Review]. Annu. Rev. Immunol. 15: 323–350.

    Article  PubMed  CAS  Google Scholar 

  7. Gross SS, Levi R. (1992) Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J. Biol. Chem. 267: 25722–25729.

    PubMed  CAS  Google Scholar 

  8. Rosenkranz-Weiss P, Sessa WC, Milstien S, et al. (1994) Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells: elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J. Clin. Invest. 93: 2236–2243.

    Article  CAS  Google Scholar 

  9. Nathan C. (1994) Nitric oxide and biopterin: a study in chiaroscuro. J. Clin. Invest. 93: 1875–1876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Assreuy J, Cunha FQ, Liew FY, Moncada S. (1993) Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br. J. Pharmacol. 108: 833–837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rogers NE, Ignarro LJ. (1992) Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem. Biophys. Res. Commun. 189: 242.

    Article  PubMed  CAS  Google Scholar 

  12. Albina JE. (1995) On the expression of nitric oxide synthase by human macrophages—why no NO [Review]. J. Leukoc. Biol 58: 643–649.

    Article  PubMed  CAS  Google Scholar 

  13. Denis M. (1994) Human monocytes/macrophages: NO or no NO? J. Leukoc. Biol. 55: 682–684.

    Article  PubMed  CAS  Google Scholar 

  14. Ochoa JB, Curti B, Peitzman AB, et al. (1992) Increased circulating nitrogen oxides after human tumor immunotherapy: correlation with toxic hemodynamic changes [published erratum appears in J. Natl. Cancer Inst. (1992) 84: 12991]. J. Natl. Cancer Inst. 84: 864–867.

    Article  PubMed  CAS  Google Scholar 

  15. Hibbs JB, Jr, Westenfelder C, Taintor R, et al. (1992) Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy [published erratum appears in J. Clin Invest. (1992) 90: 295]. J. Clin. Invest. 89: 867–877.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Green LC, de Luzuriaga KR, Wagner DA, et al. (1981) Nitrate biosynthesis in man. Proc. Natl. Acad. Sci. U.S.A. 78: 7764–7768.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ochoa JB, Udekwu AO, Billiar TR, et al. (1991) Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet 351: 265–266.

    Google Scholar 

  18. Kun JFJ, Mordmuller B, Lell B, et al. (1998) Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet 351: 265–266.

    Article  PubMed  CAS  Google Scholar 

  19. Feelisch M, Stamler JS. (1996) Methods in Nitric Oxide Research. John Wiley & Sons, Chichester.

    Google Scholar 

  20. Stamler JS, Singel DJ, Loscalzo J. (1992) Biochemistry of nitric oxide and its redox-activated forms. [Review]. Science 258: 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  21. Green LC, Wagner DA, Glogowski J, et al. (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 126: 131–138.

    Article  PubMed  CAS  Google Scholar 

  22. Granger DL, Taintor RR, Boockvar KS, Hibbs JB, Jr. (1995) Determination of nitrate and nitrite in biological samples using bacterial nitrate reductase coupled with the Griess reaction. Methods: A Companion to Methods Enzymol 7: 78–83.

    Article  CAS  Google Scholar 

  23. Beckman JS, Chen J, Ischiropoulos H, Crow JP. (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol. 233: 229–240.

    Article  PubMed  CAS  Google Scholar 

  24. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS. (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79: 1137–1146.

    Article  CAS  PubMed  Google Scholar 

  25. Mannick JB, Miao XQ, Stamler JS. (1997) Nitric oxide inhibits Fas-induced apoptosis. J. Biol Chem. 272: 24125–24128.

    Article  PubMed  CAS  Google Scholar 

  26. Reiling N, Kroncke R, Ulmer AJ, et al. (1996) Nitric oxide synthase—expression of the endothelial, Ca2+/calmodulin-dependent in human B and T lymphocytes. Eur. J. Immunol 26: 511–516.

    Article  PubMed  CAS  Google Scholar 

  27. Chen LY, Metha JL. (1996) Further evidence of the presence of constitutive and inducible nitric oxide synthase isoforms in human platelets. J. Cardiovasc. Pharmacol. 27: 154–158.

    Article  PubMed  CAS  Google Scholar 

  28. Radomski MW, Palmer RM, Moncada S. (1990) Characterization of the L-arginine:nitric oxide pathway in human platelets. Br. J. Pharmacol. 101: 325–328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Malinski T, Radomski MW, Taha Z, Moncada S. (1993) Direct electrochemical measurement of nitric oxide released from human platelets. Biochem. Biophys. Res. Commun. 194: 960–965.

    Article  PubMed  CAS  Google Scholar 

  30. Weinberg JB, Misukonis MA, Shami PJ, et al. (1995) Human mononuclear phagocyte inducible nitric oxide synthase (iNOS). Analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood 86: 1184–1195.

    PubMed  CAS  Google Scholar 

  31. Salvemini D, de Nucci G, Gryglewski RJ, Vane JR. (1989) Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc. Natl Acad. Sci. U.S.A. 86: 6328–6332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hunt NC, Goldin RD, (1992) Nitric oxide production by monocytes in alcoholic liver disease. J. Hepatol 14: 146–150.

    Article  PubMed  CAS  Google Scholar 

  33. Middleton SJ, Cuthbert AW, Shorthouse M, Hunter JO. (1993) Nitric oxide affects mammalian distal colonic smooth muscle by tonic neural inhibition. Br. J. Pharmacol. 108: 974–979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Martin JH, Edwards SW. (1993) Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. Reactive oxygen intermediates are involved in monocyte-mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing. J. Immunol. 150: 3478–3486.

    PubMed  CAS  Google Scholar 

  35. Wickramasinghe SN, Hasan R. (1993) Possible role of macrophages in the pathogenesis of ethanol-induced bone marrow damage. Br. J. Haematol. 83: 574–579.

    Article  PubMed  CAS  Google Scholar 

  36. Petit JF, Phan-Bich L, Lemaire G, Martinache C, Lopez M. (1993) During their differentiation into macrophages, human monocytes acquire cytostatic activity independent of NO and TNF alpha. Res. Immunol. 144: 277–280; discussion 2994–298.

    Article  PubMed  CAS  Google Scholar 

  37. Chu SC, Wu HP, Banks TC, Eissa NT, Moss J. (1995) Structural diversity in the 5′-untranslated region of cytokine-stimulated human inducible nitric oxide synthase mRNA. J. Biol. Chem. 270: 10625–10630.

    Article  PubMed  CAS  Google Scholar 

  38. Eissa NT, Strauss AJ, Haggerty CM, et al. (1996) Alternative splicing of human inducible nitricoxide synthase mRNA. Tissue-specific regulation and induction by cytokines. J. Biol. Chem. 271: 27184–27187.

    Article  PubMed  CAS  Google Scholar 

  39. Granger DL, Hibbs JB, Jr, Perfect JR, Durack DT. (1988) Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. J. Clin. Invest. 81: 1129–1136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cameron ML, Granger DL, Weinberg JB, Kozumbo WJ, Koren HS. (1990) Human alveolar and peritoneal macrophages mediate fungistasis independently of L-arginine oxidation to nitrite or nitrate. Am. Rev. Respir. Dis. 142: 1313–1319.

    Article  PubMed  CAS  Google Scholar 

  41. Denis M. (1991) Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J. Leukoc. Biol. 49: 380–387.

    Article  PubMed  CAS  Google Scholar 

  42. Sherman MP, Loro ML, Wong VZ, Tashkin DP. (1991) Cytokine-and Pneumocystis carinii-induced L-arginine oxidation by murine and human pulmonary alveolar macrophages. J. Protozool. 38: 234S–236S.

    Article  PubMed  CAS  Google Scholar 

  43. Muñoz-Fernández MA, Fernández MA, Fresno M. (1992) Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-alpha and IFN-gamma through a nitric oxide-dependent mechanism. Immunol. Lett. 33: 35–40.

    Article  PubMed  Google Scholar 

  44. Harwix S, Andreesen R, Ferber E, Schwamberger G. (1992) Human macrophages secrete a tumoricidal activity distinct from tumour necrosis factor-α and reactive nitrogen intermediates. Res. Immunol. 143: 89–94.

    Article  PubMed  CAS  Google Scholar 

  45. Murray HW, Teitelbaum RF. (1992) L-argininereactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J. Infect. Dis. 165: 513–517.

    Article  PubMed  CAS  Google Scholar 

  46. Padgett EL, Pruett SB. (1992) Evaluation of nitrite production by human monocyte-derived macrophages. Biochem. Biophys. Res. Commun. 286: 775–781.

    Article  Google Scholar 

  47. Ben-Efraim S, Tak C, Fieren MJWA, et al. (1993) Activity of human peritoneal macrophages against a human tumor: role of tumor necrosis factor-α, PGE2 and nitrite, in vitro studies. Immunol. Lett. 37: 27–33.

    Article  PubMed  CAS  Google Scholar 

  48. Bermudez LE. (1993) Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin. Exp. Immunol. 91: 277–281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Keller R, Keist R, Joller P, Groscurth P. (1993) Mononuclear phagocytes from human bone marrow progenitor cells; morphology, surface phenotype, and functional properties and activated cells. Clin. Exp. Immunol. 91: 176–182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sakai N, Milstien S. (1993) Availability of tetrahydrobiopterin is not a factor in the inability to detect nitric oxide production by human macrophages. Biochem. Biophys. Res. Commun. 193: 378–383.

    Article  PubMed  CAS  Google Scholar 

  51. Schneemann M, Schoedon G, Hofer S, et al. (1993) Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J. Infect. Dis. 167: 1358–1363.

    Article  CAS  PubMed  Google Scholar 

  52. Barnewall RE, Rikihisa Y. (1994) Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytes with iron-transferrin. Infect. Immun. 62: 4804–4810.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Essery SD, Saadi AT, Twite SJ, et al. (1994) Lewis antigen expression on human monocytes and binding of pyrogenic toxins. Agents Actions 41: 108–110.

    Article  PubMed  CAS  Google Scholar 

  54. Gyan B, Troye-Blomberg M, Perlmann P, Bjorkman A. (1994) Human monocytes cultured with and without interferon-gamma inhibit Plasmodium falciparum parasite growth in vitro via secretion of reactive nitrogen intermediates. Parasite Immunol. 16: 371–375.

    Article  PubMed  CAS  Google Scholar 

  55. Leibovich SJ, Polverini PJ, Fong TW, Harlow LA, Koch ARE. (1994) Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc. Natl. Acad. Sci. U.S.A. 91: 4190–4194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Martin JH, Edwards SW. (1994) Interferon-gamma enhances monocyte cytotoxicity via enhanced reactive oxygen intermediate production. Absence of an effect on macrophage cytotoxicity is due to failure to enhance reactive nitrogen intermediate production. Immunology 81: 592–597.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Zembala M, Siedlar M, Marcinkiewicz J, Pryjma J. (1994) Human monocytes are stimulated for nitric oxide release in vitro by some tumor cells but not by cytokines and lipopolysaccharide. Eur. J. Immunol. 24: 435–439.

    Article  PubMed  CAS  Google Scholar 

  58. Siedlar M, Marcinkiewicz M, Zembala M. (1995) MHC class I and class II determinants and some adhesion molecules are engaged in the regulation of nitric oxide production in vitro by human monocytes stimulated with colon carcinoma cells. Clin. Immunol. Immunopathol. 77: 380–384.

    Article  PubMed  CAS  Google Scholar 

  59. Bose M, Farnia P. (1995) Proinflammatory cytokines can significantly induce human mononuclear phagocytes to produce nitric oxide by a cell maturation-dependent process. Immunol Lett. 48: 59–64.

    Article  PubMed  CAS  Google Scholar 

  60. Reiling N, Ulmer AJ, Duchrow M, et al. (1994) Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. Eur. J. Immunol. 24: 1941–1944.

    Article  PubMed  CAS  Google Scholar 

  61. Bukrinsky MI, Nottet H, Schmidt-Mayerova H, et al. (1995) Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes—implications for HIV-associated neurological disease. J. Exp. Med. 181: 735–745.

    Article  CAS  PubMed  Google Scholar 

  62. Bagasra O, Bobroski L, Sarker A, et al. (1997) Absence of the inducible form of nitric oxide synthase in the brains of patients with the acquired immunodeficiency syndrome. J. Neurovirol. 3: 153–167.

    Article  PubMed  CAS  Google Scholar 

  63. Liu J, Zhao ML, Brosnan CF, Lee SC. (1996) Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of Il-1 beta and IL-1 receptor antagonist. J. Immunol. 157: 3569–3576.

    PubMed  CAS  Google Scholar 

  64. Zinetti M, Fantuzzi G, Delgado R, et al. (1995) Endogenous nitric oxide production by human monocyte cells regulates LPS-induced TNF production. Eur. Cytokine Network 6: 45–48.

    CAS  Google Scholar 

  65. Condino-Neto A, Muscara MN, Bellinatipires R, et al. (1996) Effect of therapy with recombinant human interferon-gamma on the release of nitric oxide by neutrophils and mononuclear cells from patients with chronic granulomatous disease. J. Interferon. Cytokine Res. 16: 357–364.

    Article  PubMed  CAS  Google Scholar 

  66. Kashem A, Endoh M, Yano N, et al. (1996) Expression of inducible-NOS in human glomerulonephritis—the possible source is infiltrating monocytes/macrophages. Kidney Int. 50: 392–399.

    Article  PubMed  CAS  Google Scholar 

  67. St. Clair EW, Wilkinson WE, Lang T, et al. (1996) Increased expression of blood mononuclear cell nitric oxide synthase type 2 in the rheumatoid arthritis patients. J. Exp. Med. 184: 1173–1178.

    Article  PubMed  CAS  Google Scholar 

  68. Wang CL, Su MH, Chao TY, Shaio Mf, Yang KD. (1996) When do human macrophages release nitric oxide? Variable effects of certain in vitro cultural and in vivo resident conditions. Proc. Natl. Sci. Counc. Repub. China B 20: 65–70.

    PubMed  CAS  Google Scholar 

  69. Amin AR, Attur M, Vyas P, et al. (1997) Expression of nitric oxide synthase in human peripheral blood mononuclear cells and neutrophils. J. Inflam. 47: 190–205.

    Google Scholar 

  70. Polack B, Pernod G, Barro C, Doussiere J. (1997) Role of oxygen radicals in tissue factor induction by endotoxin in blood monocytes. Haemostasis 27: 193–200.

    PubMed  CAS  Google Scholar 

  71. Saha DC, Astiz ME, Lin RY, Rackow EC, Eales LJ. (1997) Monophosphoryl lipid A stimulated upregulation of nitric oxide synthase and nitric oxide release by human monocytes in vitro. Immunopharmacology 37: 175–184.

    Article  PubMed  CAS  Google Scholar 

  72. Snell JC, Chernyshev O, Gilbert DL, Colton CA. (1997) Polyribonucleotides induce nitric oxide production by human monocyte-derived macrophages. J. Leukoc. Biol. 62: 369–373.

    Article  PubMed  CAS  Google Scholar 

  73. Ding AH, Nathan CF, Stuehr DJ. (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. comparison of activating cytokines and evidence for independent production. J. Immunol. 141: 2407–24112.

    PubMed  CAS  Google Scholar 

  74. Zhou AQ, Chen ZF, Rummage JA, et al. (1995) Exogenous interferon-gamma induces endogenous synthesis of interferon-alpha and -beta by murine macrophages for induction of nitric oxide synthase. J. Interferon Cytokine Res. 15: 897–904.

    Article  PubMed  CAS  Google Scholar 

  75. Diefenbach A, Schindler H, Donhauser N, et al. (1998) Type 1 interferon (IFN-alpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity 8: 77–87.

    Article  PubMed  CAS  Google Scholar 

  76. Sharara AI, Perkins DJ, Misukonis MA, et al. (1997) Interferon (IFN)-alpha activation of human blood mononuclear cells in vitro and in vivo for nitric oxide synthase (NOS) type 2 mRNA and protein expression—possible relationship of induced NOS2 to the anti-hepatitis C effects of IFN-alpha in vivo. J. Exp. Med. 186: 1495–1502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Vial T, Descotes J. (1995) Immune-mediated side-effects of cytokines in humans. Toxicology 105: 32–57.

    Article  Google Scholar 

  78. Levesque MC, Ward FE, Jeffery DR, Weinberg JB. (1998) Interferon beta-la induced polyarthritis in a patient with the HLA-DRB1 *0404 allele. Arth. Rheum. In press.

  79. Kolb JP, Paul-Eugene N, Damais C, et al. (1994) Interleukin-4 stimulates cGMP production by IFN-γ-activated human monocytes. Involvement of the nitric oxide synthase pathway. J. Biol. Chem. 269: 9811–9816.

    PubMed  CAS  Google Scholar 

  80. Mautino G, Paul-Eugene N, Chanez P, et al. (1994) Heterogeneous spontaneous and interleukin-4-induced nitric oxide production by human monocytes. J. Leukoc. Biol. 56: 15–20.

    Article  PubMed  CAS  Google Scholar 

  81. Paul-Eugene N, Kolb JP, Damais C, Yamaoka K, Dugas B. (1994) Regulatory role of nitric oxide in the IL-4-induced IgE production by normal human peripheral blood mononuclear cells. Lymphokine Cytokine Res. 13: 287–293.

    PubMed  CAS  Google Scholar 

  82. Lecoanet-Henchoz S, Gauchat JF, Aubry JP, et al. (1995) CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-Cd18 and CD11c-CD18. Immunity 3: 199–125.

    Article  Google Scholar 

  83. Paul-Eugene N, Kolb JP, Sarfati M, et al. (1995) Ligation of CD23 activated soluble guanylate cyclase in human monocytes via an L-arginine-dependent mechanism. J. Leukoc. Biol. 57: 160–167.

    Article  PubMed  CAS  Google Scholar 

  84. Paul-Eugene N, Pene J, Bousquet J, Dugas B. (1995) Role of cyclic nucleotides and nitric oxide in blood mononuclear cell IgE production stimulated by IL-4. Cytokine 7: 64–69.

    Article  PubMed  CAS  Google Scholar 

  85. Paul-Eugene N, Mossalayi D, Sarfati M, et al. (1995) Evidence for a role of Fc epsilon RII/CD23 in the IL-4-induced nitric oxide production by normal human mononuclear phagocytes. Cell. Immunol. 163: 314–318.

    Article  PubMed  CAS  Google Scholar 

  86. Dugas N, Vouldoukis L, Becherel P, et al. (1996) Triggering of CD23b antigen by anti-CD23 monoclonal antibodies induces interleukin-10 production by human macrophages. Eur. J. Immunol. 26: 1394–1398.

    Article  PubMed  CAS  Google Scholar 

  87. Vouldoukis I, Riverosmoreno V, Dugas V, et al. (1995) The killing of leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc-epsilon-RII/Cd23 surface antigen. Proc. Natl. Acad. Sci. U.S.A. 92: 7804–7808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Aubry JP, Dugas N, Lecoanet-Henchoz S, et al. (1997) The 25-Kda soluble CD23 activates type III constitutive nitric oxide-synthase activity via CD11b and CD11c expressed by human monocytes. J. Immunol. 159: 614–622.

    PubMed  CAS  Google Scholar 

  89. Vouldoukis I, Becherel PA, Riverosmoreno V, et al. (1997) Interleukin-10 and interleukin-4 inhibit intracellular killing of leishmania infantum and leishmania major by human macrophages by decreasing nitric oxide generation. Eur. J. Immunol 27: 860–865.

    Article  PubMed  CAS  Google Scholar 

  90. Schneemann M, Schoedon G, Linscheid P, et al. (1997) Nitrite generation in interleukin-4-treated human macrophage cultures does not involved the nitric oxide synthase pathway. J. infect. Dis. 175: 130–135.

    Article  PubMed  CAS  Google Scholar 

  91. Dumarey CH, Labrousse V, Rastogi N, Vargaftig BB, Bachelet M. (1994) Selective Mycobacterium avium-induced production of nitric oxide by human monocyte-derived macrophages. J. Leukoc. Biol 56: 36–40.

    Article  PubMed  CAS  Google Scholar 

  92. Naotunne TS, Karunaweera ND, Mendis KN, Carter R. (1994) Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. Immunology 78: 555–562.

    Google Scholar 

  93. Seitzer U, Scheeltoellner D, Toellner KM, et al. (1997) Properties of multinucleated giant cells in a new in vitro model for human granuloma formation. J. Pathol 182: 99–105.

    Article  PubMed  CAS  Google Scholar 

  94. Pietraforte D, Tritarelli E, Testa U, Minetti M. (1994) gp120 HIV envelope glycoprotein increases the production of nitric oxide in human monocyte-derived macrophages. J. Leukoc. Biol 55: 175–182.

    Article  PubMed  CAS  Google Scholar 

  95. Tufano MA, Rossano F, Catalanotti P, et al. (1994) Properties of Yersinia enterocolitica porins: interference with biological functions of phagocytes, nitric oxide production and selective cytokine release. Res. Microbiol. 145: 297–307.

    Article  PubMed  CAS  Google Scholar 

  96. Belenky SN, Robbins RA, Rubinstein I. (1993) Nitric oxide synthase inhibitors attenuate human monocyte chemotaxis in vitro. J. Leukoc. Biol. 53: 498–503.

    Article  PubMed  CAS  Google Scholar 

  97. De Maria R, Cifone MG, Trotta R, et al. (1994) Triggering of human monocyte activation through CD69, a member of the natural killer cell gene complex family of signal transducing receptors. J. Exp. Med. 180: 1999–2004.

    Article  PubMed  Google Scholar 

  98. Perez-Mediavilla LA, Lopez-Zabalza MJ, Calonge M, et al. (1995) Inducible nitric oxide synthase in human lymphomononuclear cells activated by synthetic peptides derived from extracellular matrix proteins. FEBS Lett. 357: 121–124.

    Article  PubMed  CAS  Google Scholar 

  99. McLachlan JA, Serkin CD, Bakouche O. (1996) Dehydroepiandrosterone modulation of lipopo-lysaccharide-stimulated monocyte cytotoxicity. J. Immunol 156: 328–335.

    PubMed  CAS  Google Scholar 

  100. Magazine HI, Liu Y, Bilfinger TV, Fricchione GL, Stefano GB. (1996) Morphine-induced conformational changes in human monocytes, granulocytes, and endothelial cells and in invertebrate immunocytes and microglia are mediated by nitric oxide. J. Immunol. 156: 4845–4850.

    PubMed  CAS  Google Scholar 

  101. Aymerich MS, Bengoecheaalonso MT, Lopezzabalza MJ, Santiago E, Lopezmoratalla N. (1998) Inducible nitric oxide synthase (iNOS) expression in human monocytes triggered by beta-endorphin through an increase in cAMP. Biochem. Biophys. Res. Commun. 245: 717–721.

    Article  PubMed  CAS  Google Scholar 

  102. Stefano GB, Liu Y, Goligorsky MS. (1996) Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes microglia, and human monocytes. J. Biol. Chem. 271: 19238–19242.

    Article  PubMed  CAS  Google Scholar 

  103. King JM, Srivastava KD, Stefano GB, et al. (1997) Human monocyte adhesion is modulated by endothelin B receptor-coupled nitric oxide release. J. Immunol 158: 880–886.

    PubMed  CAS  Google Scholar 

  104. Lammas DA, Stober C, Harvey CJ, et al. (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2ZP2X(7)) receptors. Immunity 7: 433–444.

    Article  PubMed  CAS  Google Scholar 

  105. Vitek MP, Snell J, Dawson H, Colton CA. (1997) Modulation of nitric oxide production in human macrophages by apolipoprotein-E and amyloid-beta peptide. Biochem. Biophys. Res. Commun. 240: 391–394.

    Article  PubMed  CAS  Google Scholar 

  106. Criado-Jimenez M, Rivas-Cabanero L, Martin-Oterino JA, Lopez-Novoa JM, Sanchez-Rodriguez A. (1995) Nitric oxide production by mononuclear leukocytes in alcoholic cirrhosis. J. Mol. med. 73: 31–33.

    Article  PubMed  CAS  Google Scholar 

  107. Laffi G, Foschi M, Masini E, et al. (1995) Increased production of nitric oxide by neutrophils and monocytes from cirrhotic patients with ascites and hyperdynamic circulation. Hepatology 22: 1666–1673.

    PubMed  CAS  Google Scholar 

  108. Masini E, Mugnai L, Foschi M, et al. (1995) Changes in the production of nitric oxide and superoxide by inflammatory cells in liver cirrhosis. Int. Arch. Allergy Immunol. 107: 197–198.

    Article  PubMed  CAS  Google Scholar 

  109. Majano PL, García-Monzón C, López-Cabrera M, et al. (1998) Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J. Clin. Invest. 101: 1343–1352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Majano PL, Garciamonzon C, Lopezcabrera M, et al. (1998) Inducible nitric oxide synthase expression in chronic viral hepatitis. J. Clin. Invest. 101: 1343–1352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kobzik L, Bredt DS, Lowenstein CJ, et al. (1993) Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am. J. Respir. Cell. Mol. Biol. 9: 371–377.

    Article  PubMed  CAS  Google Scholar 

  112. Tracey WR, Xue C, Klinghofer V, et al. (1994) immunochemical detection of inducible NO synthase in human lung. Am. J. Physiol. 266: L722–L727.

    Article  PubMed  CAS  Google Scholar 

  113. Haddad IY, Pataki G, Hu P, et al. (1994) Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Invest. 94: 2407–2413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kooy NW, Royall JA, Ye YZ, Kelly DR, Beckman JS. (1995) Evidence for in vivo peroxynitrite production in human acute lung injury. Am. J. Respir. Crit. Care Med. 151: 1250–1254.

    PubMed  CAS  Google Scholar 

  115. McDermott CD, Gavita SM, Shennib H, Giaid A. (1997) Immunohistochemical localization of nitric oxide synthase and the oxidant peroxynitrite in lung transplant recipients with obliterative bronchiolitis. Transplantation 64: 270–274.

    Article  PubMed  CAS  Google Scholar 

  116. Nozaki Y, Hasegawa Y, Ichiyama S, Nakashima I, Shimokata K. (1997) Mechanism of nitric oxide-dependent killing of mycobacterium bovis BCG in human alveolar macrophages. Infect. Immun. 65: 3544–3647.

    Google Scholar 

  117. Kumar V, Jindal SK, Ganguly NK. (1995) Release of reactive oxygen and nitrogen intermediates from monocytes of patients with pulmonary tuberculosis. Scand. J. Clin. Lab. Invest. 55: 163–169.

    Article  PubMed  CAS  Google Scholar 

  118. Nicholson S, Bonecinialmeida MDG, Silva LE, Jr, et al. (1996) Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 183: 2293–2302.

    Article  PubMed  CAS  Google Scholar 

  119. Tunctan B, Okur H, Calisir CH, et al. (1998) Comparison of nitric oxide production by monocyte/macrophages in healthy subjects and patients with active pulmonary tuberculosis. Pharmacol. Res. 37: 219–226.

    Article  PubMed  CAS  Google Scholar 

  120. Wang CH, Liu CY, Lin HC, et al. (1998) Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in Alveolar macrophages. Eur. Respir. J. 11: 809–815.

    Article  PubMed  CAS  Google Scholar 

  121. Beckman JS, Ye YZ, Anderson PG, et al. (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohisto-chemistry. Biol. Chem. Hoppe-Seyler 375: 81–88.

    Article  Google Scholar 

  122. Buttery LDK, Springall DR, Chester AH, et al. (1996) Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab. Invest. 75: 77–85.

    PubMed  CAS  Google Scholar 

  123. Wilcox JN, Subramanian RR, Sundell CL, et al. (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler. Thromb. Vasc. Biol. 17: 2479–2488.

    Article  PubMed  CAS  Google Scholar 

  124. Luoma JS, Stralin P, Marklund SL, et al. (1998) Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions—colocalization with epitopes characteristics oxidized LDL and peroxynitrite-modified proteins. Arterioscler. Thromb. Vasc. Biol. 18: 157–167.

    Article  PubMed  CAS  Google Scholar 

  125. Lafond-Walker A, Chen CL, Augustine S, et al. (1997) Inducible nitric oxide synthase expression in coronary arteries of transplanted human hearts with accelerated graft arteriosclerosis. Am. J. Pathol. 151: 919–925.

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Wildhirt SM, Dudek RR, Suzuki H, Bing RJ. (1995) Involvement of inducible nitric oxide synthase in the inflammatory process of myocardial infarction. Int. J. Cardiol. 50: 253–261.

    Article  PubMed  CAS  Google Scholar 

  127. Weyand CM, Wagner AD, Bjornsson J, Goronzy JJ. (1996) Correlation of the topographical arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis. J. Clin. Invest. 98: 1642–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sakurai H, Kohsaka H, Liu MF, et al. (1995) Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J. Clin. Invest. 96: 2357–2363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. McInnes LB, Leung BP, Field M, et al. (1996) Production of nitric oxide in the synovial membrane of rheumatoid and osteoarthritis patients. J. Exp. Med. 184: 1519–1524.

    Article  PubMed  CAS  Google Scholar 

  130. Grabowski PS, Wright PK, Vanthof RJ, et al. (1997) Immunolocalization of inducible nitric oxide synthase in synovium and cartilage in rheumatoid arthritis and osteoarthritis. Br. J. Rheumatol. 36: 651–655.

    Article  PubMed  CAS  Google Scholar 

  131. Perkins DJ, St. Clair WE, Misukonis MA, Weinberg JB. (1998) Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-TNF-alpha monoclonal antibody (cA2). Arthritis. Rheum. In press.

  132. Moilanen E, Moilanen T, Knowles R, et al. (1997) Nitric oxide synthase is expressed in human macrophages during foreign body inflammatory. Am. J. Pathol. 150: 881–887.

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Watkins SC, Macaulay W, Turner D, et al. (1997) Identification of inducible nitric oxide synthase in human macrophages surrounding loosened hip prostheses. Am. J. Pathol. 150: 1199–1206.

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Thomsen LL, Miles DW, Happerfield L, et al. (1995) Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 72: 41–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ambs S, Merriam WG, Bennett WP, et al. (1998) Frequent nitric oxide synthase-2 expression in human colon adenomas—implication for tumor angiogenesis and colon cancer progression. Cancer Res. 58: 334–341.

    PubMed  CAS  Google Scholar 

  136. Thomsen LL, Lawton FG, Knowles RG, et al. (1994) Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 54: 1352–1354.

    PubMed  CAS  Google Scholar 

  137. Cobbs CS, Brenman JE, Aldape KD, Bredt DS, Israel MA. (1995) Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 55: 727–730.

    PubMed  CAS  Google Scholar 

  138. Anstey NM, Weinberg JB, Hassanali M, et al. (1996) Nitric oxide in Tanzanian children with malaria. Inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J. Exp. Med. 184: 557–567.

    Article  PubMed  CAS  Google Scholar 

  139. Furusu A, Miyazaki M, Abe K, et al. (1998) Expression of endothelial and inducible nitric oxide synthase in human glomerulonephritis. Kidney Int. 53: 1760–1768.

    Article  PubMed  CAS  Google Scholar 

  140. Singer II, Kawka DW, Scott S, et al. (1996) Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111: 871–885.

    Article  PubMed  CAS  Google Scholar 

  141. Ikeda I, Kasajima T, Ishiyama S, et al. (1997) Distribution of inducible nitric oxide synthase in ulcerative colitis. Am. J. Gastroenterol. 92: 1339–1341.

    PubMed  CAS  Google Scholar 

  142. Mannick EE, Bravo LE, Zarama G, et al. (1996) Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effect of antibiotics and antioxidants. Cancer Res. 56: 3238–3243.

    PubMed  CAS  Google Scholar 

  143. ter Steege J, Burrman W, Arends JW, Forget P. (1997) Presence of inducible nitric oxide synthase, nitrotyrosine, CD68, and CD14 in the small intestine in celiac disease. Lab. Invest. 77: 29–36.

    PubMed  Google Scholar 

  144. Bo L, Dawson TM, Wesselingh S, et al. (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 36: 778–786.

    Article  PubMed  CAS  Google Scholar 

  145. Bagasra O, Michaels FH, Zheng YM, et al. (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 92: 12041–12045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. DeGroot CJA, Ruuls SR, Theeuwes JWM, Dijkstra CD, Vandervalk P. (1997) Immunocyto-chemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 56: 10–20.

    Article  CAS  Google Scholar 

  147. Hooper DC, Bagasra O, Marini JC, et al. (1997) Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 94: 2528–2533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Myatt L, Eis ALW, Brockman DE, et al. (1997) Inducible (type II) nitric oxide synthase in human placental villous tissue of normotensive, pre-eclamptic and intrauterine growth-restricted pregnancies. Placenta 18: 261–268.

    Article  PubMed  CAS  Google Scholar 

  149. Zarlingo TJ, Eis ALW, Brockman DE, Kossenjans W, Myatt L. (1997) Comparative localization of endothelial and inducible nitric oxide synthase isoforms in haemochorial and epitheliochorial placentae. Placenta 18: 511–520.

    Article  PubMed  CAS  Google Scholar 

  150. Eis ALW, Brockman DE, Myatt L. (1997) Immu-nolocalization of the inducible nitric oxide synthase isoform in human fetal membranes. Am. J. Reprod. Immunol. 38: 289–294.

    Article  PubMed  CAS  Google Scholar 

  151. Condino-Neto A, Muscara MN, Grumach AS, Carneiro-Sampaio MM, De Nucci G. (1993) Neutrophils and mononuclear cells from patients with chronic granulomatous disease release nitric oxide. Br. J. Clin. Pharmacol. 35: 485–490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. López-Moratalla N, Calleja A, Gonzalez A, et al. (1996) Inducible nitric oxide synthase in monocytes from patients with Graves’ disease. Biochem. Biophys. Res. Commun. 226: 723–729.

    Article  PubMed  Google Scholar 

  153. Kim C, Schinkel C, Fuchs D, et al. (1995) Interleukin-13 effectively down-regulates the monocyte inflammatory potential during traumatic stress. Arch. Surg. 130: 1330–1336.

    Article  PubMed  CAS  Google Scholar 

  154. Dias-Da-Motta P, Arruda VR, Muscara MN, et al. (1996) The release of nitric oxide and superoxide anion by neutrophils and mononuclear cells from patients with sickle cell anaemia. Br. J. Haematol. 93: 333–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brice Weinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinberg, J.B. Nitric Oxide Production and Nitric Oxide Synthase Type 2 Expression by Human Mononuclear Phagocytes: A Review. Mol Med 4, 557–591 (1998). https://doi.org/10.1007/BF03401758

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401758

Keywords

Navigation