Skip to main content
Log in

Curcumin Is an In Vivo Inhibitor of Angiogenesis

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Curcumin is a small-molecular-weight compound that is isolated from the commonly used spice turmeric. In animal models, curcumin and its derivatives have been shown to inhibit the progression of chemically induced colon and skin cancers. The genetic changes in carcinogenesis in these organs involve different genes, but curcumin is effective in preventing carcinogenesis in both organs. A possible explanation for this finding is that curcumin may inhibit angiogenesis.

Materials and Methods

Curcumin was tested for its ability to inhibit the proliferation of primary endothelial cells in the presence and absence of basic fibroblast growth factor (bFGF), as well as its ability to inhibit proliferation of an immortalized endothelial cell line. Curcumin and its derivatives were subsequently tested for their ability to inhibit bFGF-induced corneal neovascularization in the mouse cornea. Finally, curcumin was tested for its ability to inhibit phorbol ester-stimulated vascular endothelial growth factor (VEGF) mRNA production.

Results

Curcumin effectively inhibited endothelial cell proliferation in a dose-dependent manner. Curcumin and its derivatives demonstrated significant inhibition of bFGF-mediated corneal neovascularization in the mouse. Curcumin had no effect on phorbol ester-stimulated VEGF production.

Conclusions

These results indicate that curcumin has direct antiangiogenic activity in vitro and in vivo. The activity of curcumin in inhibiting carcinogenesis in diverse organs such as the skin and colon may be mediated in part through angiogenesis inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ammon HP, Wahl MA. (1991) Pharmacology of curcuma longa. Planta Med. 57: 1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Stoner GD, Mukhtar H. Polyphenols as cancer chemopreventive agents. (1995) J. Cell. Biochem. Suppl. 22: 169–180.

    Article  CAS  PubMed  Google Scholar 

  3. Huang MT, Lou YR, Ma W, Newmark HL, Reuhl KR, Conney AR. (1994) Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res. 54: 5841–5847.

    PubMed  CAS  Google Scholar 

  4. Rao CV, Rivenson A, Simi B, Reddy BS. (1995) Chemprovention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res. 55: 259–266.

    PubMed  CAS  Google Scholar 

  5. Conney AH, Lysz T, Ferraro T, Abidi TF, Manchand PS, Laskin JD, Huang MT. (1991) Inhibitory effect of curcumin and some related dietary components on tumor promotion and arachidonic acid metabolism in mouse skin. Adv. Enzyme Regul. 31: 385–396.

    Article  CAS  PubMed  Google Scholar 

  6. Huang MT, Ma W, Lu YP, Chang RL, Fisher C, Manchand PS, Newmark HL, Conney AH. (1995) Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin, and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Carcinogenesis 16: 2493–2497.

    Article  CAS  PubMed  Google Scholar 

  7. Huang MT, Deschner EE, Newmark HL, Wang ZY, Ferraro TA, Conney AH. (1992) Effect of dietary curcumin and ascorbyl palmitate on azoxymethanol-induced colonic epithelial cell proliferation and focal areas of dysplasia. Cancer Lett. 64: 117–121.

    Article  CAS  PubMed  Google Scholar 

  8. Lu YP, Chang RL, Lou YR, Huang MT, Newmark HL, Reuhl K, Conney AH. (1994) Effect of curcumin on 12-O-tetradecanoylphorbol-13-acetateand ultraviolet B light-induced expression of c-jun and c-fos in JB6 cells and in mouse epidermis. Carcinogenesis 15: 2363–2370.

    Article  CAS  PubMed  Google Scholar 

  9. Singh S, Aggarwal BB. (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin. J. Biol. Chem. 270: 24995–25000.

    Article  CAS  PubMed  Google Scholar 

  10. Huang TS, Lee SC, Lin JK. (1991) Suppression of c-jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Proc. Natl. Acad. Sci. U.S.A. 88: 5292–5296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Korutla L, Cheung JY, Mendelsohn J, Kumar R. (1995) Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis 16: 1741–1745.

    Article  CAS  PubMed  Google Scholar 

  12. Rao CV, Simi B, Reddy BS. (1993) Inhibition by dietary curcumin of azoxymethanol-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon. Carcinogenesis 14: 2219–2225.

    Article  CAS  PubMed  Google Scholar 

  13. Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo C, Borenstein M, Dove W. (1993) Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75: 631–639.

    Article  CAS  PubMed  Google Scholar 

  14. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF. (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256: 668–670.

    Article  CAS  PubMed  Google Scholar 

  15. MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD, Buchberg AM. (1995) The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin induced intestinal neoplasia. Cell 81: 957–966.

    Article  CAS  PubMed  Google Scholar 

  16. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM. (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2. Cell 87: 803–809.

    Article  CAS  Google Scholar 

  17. Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B, Levine AJ. (1990) Mutant p53 clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1: 571–580.

    PubMed  CAS  Google Scholar 

  18. Redston MS, Papadopoulos N, Caldas C, Kinzler KW, Kern SE. (1995) Common occurrence of APC and K-ras gene mutations in the spectrum of colitis-induced neoplasias. Gastroenterology 108: 383–392.

    Article  CAS  PubMed  Google Scholar 

  19. Folkman J, Haudenschild C, Zetter BR. (1979) Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 76: 5217–5221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N, Frank D, Brownlee M, Flynn E, Parangi S, Byers HR, Folkman J. (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl. Acad. Sci. U.S.A. 94: 861–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenyon BM, Voest EE, Flynn E, Folkman J, D’Amato RJ. (1996) A model of angiogenesis in the mouse cornea. Invest. Opthalmol. Vis. Sci. 37: 1625–1632.

    CAS  Google Scholar 

  22. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106: 761–767.

    Article  CAS  PubMed  Google Scholar 

  23. Hod Y. (1992) A simplified ribonuclease protection assay. Biotechniques 13: 852–853.

    PubMed  CAS  Google Scholar 

  24. Prochaska HJ, Santamaria AB, Talalay P. (1992) Rapid detection of inducers of enzymes that protect against carcinogens. Proc. Natl. Acad. Sci. U.S.A. 89: 2394–2398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kent KC, Mii S, Harrington EO, Chang JD, Mallette S, Ware JA. (1995) Requirement for protein kinase C activation in basic fibroblast growth factor-induced human endothelial cell proliferation. Circ. Res. 77: 231–238.

    Article  CAS  PubMed  Google Scholar 

  26. Ravindranath V, Chandrasekhara N. (1981) In vitro studies on the intestinal absorption of curcumin in rats. Toxicology 20: 251–257.

    Article  CAS  PubMed  Google Scholar 

  27. Wahlstrom B, Blennow G. (1978) A study on the fate of curcumin in the rat. Acta Pharmacol. Toxicol. 43: 86–92.

    Article  CAS  Google Scholar 

  28. Arbiser JL. (1997) Antiangiogenic therapy and dermatology: a review. Drugs Today 33: 687–696.

    CAS  Google Scholar 

  29. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  30. O’Reilly MS, Holmgren L, Shing Y, Rosenthal RA, Moses M, Cao Y, Sage EH, Folkman J. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328.

    Article  PubMed  Google Scholar 

  31. Gess B, Sandner P, Kurtz A. (1996) Differential effects of kinase inhibitors on erythropoietin and vascular endothelial growth factor gene expression in rat hepatocytes. Pflugers Arch. 432: 426–432.

    Article  CAS  PubMed  Google Scholar 

  32. Larcher F, Robles AI, Duran H, Murillas R, Quintanilla M, Cano A, Conti CJ, Jorcano JL. (1996) Upregulation of vascular endothelial growth factor/vascular permeability factor in mouse skin carcinogenesis correlates with malignant progression state and activated H-ras expression levels. Cancer Res. 56: 5391–5396.

    PubMed  CAS  Google Scholar 

  33. Kohl NE, Omer CA, Conner MW, et al. (1995) Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Med. 1: 792–797.

    Article  CAS  PubMed  Google Scholar 

  34. Fahey JW, Zhang Y, Talalay P. (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. U.S.A. 94: 10367–10372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L. (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 90: 2690–2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J. L. A. was supported by NIH grant RO3AR44947 and grants from the Society for Pediatric Dermatology, the Dermatology Foundation, and the Thomas B. Fitzpatrick Research Award from the KAO Corporation. We acknowledge Albena Dinkova-Kostova for her assistance with the quinone reductase assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack L. Arbiser.

Additional information

Communicated by P. Talalay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbiser, J.L., Klauber, N., Rohan, R. et al. Curcumin Is an In Vivo Inhibitor of Angiogenesis. Mol Med 4, 376–383 (1998). https://doi.org/10.1007/BF03401744

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401744

Keywords

Navigation