Skip to main content
Log in

Internalization of a Bacillus anthracis Protective Antigen-c-Myc Fusion Protein Mediated by Cell Surface Anti-c-Myc Antibodies

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Anthrax toxin, secreted by Bacillus anthracis, consists of protective antigen (PA) and either lethal factor (LF) or edema factor (EF). PA, the receptor-binding component of the toxin, translocates LF or EF into the cytosol, where the latter proteins exert their toxic effects. We hypothesized that anthrax toxin fusion proteins could be used to kill virus-infected cells and tumor cells, if PA could be redirected to unique receptors found only on these cells.

Materials And Methods

To test this hypothesis in a model system, amino acids 410–419 of the human p62c-myc epitope were fused to the C-terminus of PA to redirect PA to the c-Myc-specific hybridoma cell line 9E10.

Results

The PA-c-Myc fusion protein killed both mouse macrophages and 9E10 hybridoma cells when administered with LF or an LF fusion protein (FP59), respectively. Similar results were obtained with PA, which suggests that PA-c-Myc used the endogenous PA receptor to enter the cells. By blocking the endogenous PA receptors on 9E10 cells with the competitive inhibitor PA SNKEΔFF, the PA-c-Myc was directed to an alternate receptor, i.e., the anti-c-Myc antibodies presented on the cell surface. The c-Myc IgG were proven to act as receptors because the addition of a synthetic peptide containing the c-Myc epitope along with PA SNKEΔFF further reduced the toxicity of PA-c-Myc + FP59.

Conclusion

This study shows that PA can be redirected to alternate receptors by adding novel epitopes to the C-terminus of PA, enabling the creation of cell-directed toxins for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith H, Keppie J, Stanley JL (1955) The chemical basis of the virulence of Bacillus anthracis. V. The specific toxin produced by B. anthracis in vivo. Br. J. Exp. Pathol. 36: 460–472.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Klimpel KR, Molloy SS, Thomas G, Leppla SH (1992) Anthrax toxin protective antigen is activated by a cell-surface protease with the sequence specficitiy and catalytic properties of furin. Proc. Natl. Acad. Sei. U.S.A. 89: 10277–10281.

    Article  CAS  Google Scholar 

  3. Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261: 7123–7126.

    PubMed  CAS  Google Scholar 

  4. Gordon VM, Leppla SH, Hewlett EL (1988) Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 56: 1066–1069.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J. Biol. Chem. 269: 20607–20612.

    PubMed  CAS  Google Scholar 

  6. Leppla SH (1991) The anthrax toxin complex. In: (ed Alouf JE, Freer JH) Sourcebook of Bacterial Protein Toxins. Academic Press, London, pp. 277–302.

    Google Scholar 

  7. Leppla S (1995) Anthrax toxins. In: (ed Moss J, Iglewski B, Vaughan M, Tu A) Bacterial Toxins and Virulence Factors in Disease. Handbook of Natural Toxins, Vol. 8 Marcel Dekker, New York, pp. 543–572.

    Google Scholar 

  8. Beall FA, Taylor MJ, Thorne CB (1962) Rapid lethal effect in rats of a third component found upon fractionating the toxin of Bacillus anthracis. J. Bacteriol. 83: 1274–1280.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Ezzell JW, Ivins BE, Leppla SH (1984) Immuno-electrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin. Infect. Immun. 45: 761–767.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Hanna PC, Kouchi S, Collier RJ (1992) Biochemical and physiological changes induced by anthrax lethal toxin in J774 macrophage-like cells. Mol. Biol. Cell 3: 1269–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh Y, Klimpel KR, Quinn CP, Chaudhary VK, Leppla SH (1991) The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J. Biol. Chem. 266: 15493–15497.

    PubMed  CAS  Google Scholar 

  12. Little SF, Leppla SH, Cora E (1988) Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infect. Immun. 56: 1807–1813.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Perelle S, Gibert M, Boquet P, Popoff MR (1993) Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect. Immun. 61: 5147–5156.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385: 833–838.

    Article  CAS  PubMed  Google Scholar 

  15. Ramsay G, Evan GI, Bishop JM (1984) The protein encoded by the human proto-oncogene c-myc. Proc. Natl. Acad. Sei. U.S.A. 81: 7742–7746.

    Article  CAS  Google Scholar 

  16. Kolodziej PA, Young RA (1991) Epitope tagging and protein surveillance. Methods Enzymol. 194: 508–519.

    Article  CAS  PubMed  Google Scholar 

  17. Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5: 3610–3616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koskinen PJ, Alitalo K (1993) Role of myc amplification and overexpression in cell growth, differentiation and death. Semin. Cancer Biol. 4: 3–12.

    PubMed  CAS  Google Scholar 

  19. Vastrik I, Makela TP, Koskinen PJ, Klefstrom J, Alitalo K (1994) Myc protein: Partners and antagonists. Crit. Rev. Oncog. 5: 59–68.

    Article  CAS  PubMed  Google Scholar 

  20. Ryan KM, Birnie GD (1996) Myc oncogenes: The enigmatic family. Biochem. J. 314: 713–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeFranco AL (1992) Tyrosine phosphorylation and the mechanism of signal transduction by the B-lymphocyte antigen receptor. Eur. J. Biochem. 210: 381–388.

    Article  CAS  PubMed  Google Scholar 

  22. Reth M (1992) Antigen receptors on B lymphocytes. Annu. Rev. Immunol. 10: 97–121.

    Article  CAS  PubMed  Google Scholar 

  23. Reth M, Hombach J, Wienands J, Campbell KS, Chien N, Justement LB, Cambier JC (1991) The B-cell antigen receptor complex. Immunol. Today 12: 196–201.

    Article  CAS  PubMed  Google Scholar 

  24. Singh Y, Chaudhary VK, Leppla SH (1989) A deleted variant of Bacillus anthracis protective antigen is non-toxic and blocks anthrax toxin action in vivo. J. Biol. Chem. 264: 19103–19107.

    PubMed  CAS  Google Scholar 

  25. Welkos SL, Lowe JR, Eden-McCutchan F, Vodkin M, Leppla SH, Schmidt JJ (1988) Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene 69: 287–300.

    Article  CAS  PubMed  Google Scholar 

  26. Quinn CP, Dancer BN (1990) Transformation of vegetative cells of Bacillus anthracis with plasmid DNA. J. Gen. Microbiol. 136: 1211–1215.

    Article  CAS  PubMed  Google Scholar 

  27. Shulman M, Wilde CD, Kohler G (1978) A better cell line for making hybridomas secreting specific antibodies. Nature 276: 269–270.

    Article  CAS  PubMed  Google Scholar 

  28. Quinn CP, Singh Y, Kumpel KR, Leppla SH (1991) Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J. Biol. Chem. 266: 20124–20130.

    PubMed  CAS  Google Scholar 

  29. Scudiero DA, Shoemaker RH, Pauli KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazo-lium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48: 4827–4833.

    PubMed  CAS  Google Scholar 

  30. Arora N, Klimpel KR, Singh Y, Leppla SH (1992) Fusions of anthrax toxin lethal factor to the ADP-ribosylation domain of Pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells. J. Biol. Chem. 267: 15542–15548.

    PubMed  CAS  Google Scholar 

  31. Arora N, Leppla SH (1993) Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J. Biol. Chem. 268: 3334–3341.

    PubMed  CAS  Google Scholar 

  32. Leppla SH (1988) Production and purification of anthrax toxin. Methods Enzymol. 165: 103–116.

    Article  CAS  PubMed  Google Scholar 

  33. Madshus IH, Stenmark H, Sandvig K, Olsnes S (1991) Entry of diphtheria toxin-protein A chimeras into cells. J. Biol. Chem. 266: 17446–17453.

    PubMed  CAS  Google Scholar 

  34. Vallera DA, Ash RC, Zanjani ED, Kersey JH, LeBien TW, Beverley PC, Neville, Jr, DM, Youle RJ (1983) Anti-T-cell reagents for human bone marrow transplantation: Ricin linked to three monoclonal antibodies. Science 222: 512–515.

    Article  CAS  PubMed  Google Scholar 

  35. Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I (1989) A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339: 394–397.

    Article  CAS  PubMed  Google Scholar 

  36. Fisher CE, Sutherland JA, Krause JE, Murphy JR, Leeman SE, vanderSpek JC (1996) Genetic construction and properties of a diphtheria toxin-related substance P fusion protein: In vitro destruction of cells bearing substance P receptors. Proc. Natl. Acad. Sei. U.S.A. 93: 7341–7345.

    Article  CAS  Google Scholar 

  37. FitzGerald D, Pastan I (1991) Redirecting Pseudomonas exotoxin. Semin. Cell Biol 2: 31–37.

    PubMed  CAS  Google Scholar 

  38. Arora N, Williamson LC, Leppla SH, Halpem JL (1994) Cytotoxic effects of a chimeric protein consisting of tetanus toxin light chain and anthrax toxin lethal factor in non-neuronal cells. J. Biol. Chem. 269: 26165–26171.

    PubMed  CAS  Google Scholar 

  39. Arora N, Leppla SH (1994) Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect. Immun. 62: 4955–4961.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Milne JC, Blanke SR, Hanna PC, Collier RJ (1995) Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-ter-minus. Mol. Microbiol 15: 661–666.

    Article  CAS  PubMed  Google Scholar 

  41. Leppla SH, Klimpel KR, Arora N (1994) Development of anthrax toxin-based fusion proteins for targeting of HIV-1-infected cells. In: Fehrenbach F (ed). Bacterial Protein Toxins. Gustav Fischer Verlag, Stuttgart, pp. 431–442.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Valery Gordon for helpful discussions in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Leppla.

Additional information

Communicated by I. Pasten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varughese, M., Chi, A., Teixeira, A.V. et al. Internalization of a Bacillus anthracis Protective Antigen-c-Myc Fusion Protein Mediated by Cell Surface Anti-c-Myc Antibodies. Mol Med 4, 87–95 (1998). https://doi.org/10.1007/BF03401732

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401732

Keywords

Navigation