Skip to main content
Log in

Photodynamic Tumor Therapy: Mitochondrial Benzodiazepine Receptors as a Therapeutic Target

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Photodynamic therapy employs photosensitive agents such as porphyrins to treat a variety of tumors accessible to light-emitting probes. This approach capitalizes on the selective retention of porphyrins by cancer cells. Cancer cells also have elevated levels of mitochondrial benzodiazepine receptors which bind porphyrins with high affinity.

Methods

Cultured cancer cell lines were exposed to porphyrin and porphyrin-like compounds and then irradiated with light. Cytotoxicity of this treatment was measured via clonogenic assays. Mitochondrial benzodiazepine receptor pharmacology was studied using [3H] PK11195 binding to cancer cell homogenates and isolated kidney mitochondrial membranes.

Results

We show that therapeutic potencies of porphyrins correlate closely with affinities for mitochondrial benzodiazepine receptors. Sensitivities of tumor cell lines to photodynamic therapy parallel their densities of these receptors.

Conclusion

We propose that porphyrin photodynamic therapy is mediated by mitochondrial benzodiazepine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Spikes JD, Jori L. (1987) Photodynamic therapy of tumors and other diseases using porphyrins. Lasers Med. Sd. 2:3–15.

    Article  Google Scholar 

  2. Moan J. (1988) Porphyrin photosensitization and phototherapy. Photochem. Photobiol. 6:681–690.

    Google Scholar 

  3. Brown SB, Kessel D. (1990) Cancer and porphyrin photochemotherapy. Mol. Aspects Med. 11:99–111.

    Article  Google Scholar 

  4. Pass HI. (1993) Photodynamic therapy in oncology: mechanisms and clinical use. J. Natl. Cancer Inst. 85:443–456.

    Article  CAS  PubMed  Google Scholar 

  5. Berns SB, Dahlman A, Johnson FM, et al. (1982) In vitro cellular effects of hematoporphyrin derivative. Cancer Res. 42: 2325–2329.

    PubMed  CAS  Google Scholar 

  6. Roberts WG, Berns MW. (1989) In vitro photosensitization I. Cellular uptake and subcellular localization of mono-L-aspartyl chlorine6, chloro-aluminum sulfonated phthalocyanine, and Photofrin n. Lasers Surg. Med. 9:90–101.

    Article  CAS  PubMed  Google Scholar 

  7. Perlin DS, Murant RS, Gibson SL, Hilf R. (1985) Effects of photosensitization by hematoporphyrin derivative on mitochondrial adenosine triphosphate-mediated proton transport and membrane integrity of R3230AC mammary adenocarcinoma. Cancer Res. 45:653–658.

    PubMed  CAS  Google Scholar 

  8. Hilf R, Murant RS, Narayanan V, Gibson SL. (1986) Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced photosensitization in R3230AC mammary tumors. Cancer Res. 46:211–217.

    PubMed  CAS  Google Scholar 

  9. Salet C. (1986) Hematoporphyrin and hematoporphyrin-derivative photosensitization of mitochondria. Biochemie 68:865–866.

    Article  CAS  Google Scholar 

  10. Krueger KE. (1991) Peripheral type benzodiazepine receptors: A second site of action for benzodiazepines. Neuropharmacology 4:1417–1423.

    Google Scholar 

  11. Verma A, Snyder SH. (1989) Peripheral type benzodiazepine receptors. Annu. Rev. Pharmacol. Toxicol. 29:307–322.

    Article  CAS  PubMed  Google Scholar 

  12. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. (1992) Isolation of the mitochondrial benzodiazepine receptor: Association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl. Acad. Sci. U.S.A. 89: 3170–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krueger KE, Mukhin AG, Antkiewicz-Michaluk L, et al. (1990) Purification, cloning and expression of a peripheral type benzodiazepine receptor. Adv. Biochem. 46:1–13.

    CAS  Google Scholar 

  14. Doble A, Burgevin MC, Meager J, et al. (1987) Partial purification and pharmacology of peripheral type benzodiazepine receptors. J. Recept. Res. 7:55–70.

    Article  CAS  PubMed  Google Scholar 

  15. Verma A, Nye JS, Snyder SH. (1987) Porphyrins are endogenous ligands for the mitochondrial (peripheral type) benzodiazepine receptor. Proc. Natl. Acad. Sci. U.S.A. 84: 2256–2260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verma A, Snyder SH. (1988) Characterization of porphyrin interactions with peripheral-type benzodiazepine receptors. Mol. Pharmacol. 34:800–805.

    PubMed  CAS  Google Scholar 

  17. Cantoni L, Rizzardini M, Skorupska M, et al. (1992) Hepatic protoporphyria is associated with a decrease in ligand binding for the mitochondrial benzodiazepine receptors in the liver. Biochem. Pharmacol. 44: 1159–1164.

    Article  CAS  PubMed  Google Scholar 

  18. Hilf R, Warne NW, Smail DB, Gibson SL. (1984) Photodynamic inactivation of selected intracellular enzymes by hematoporphyrin derivatives and their relationship to tumor cell viability in vitro. Cancer Lett. 24: 165–172.

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto K, Kawanishi S. (1991) Oxidation of specific S4 protein of mitochondria by photodynamic action of hematoporphyrin. Biochem. Pharmacol. 42:1087–1092.

    Article  CAS  PubMed  Google Scholar 

  20. Atlante A, Passarella S, Quagliariello E, Moreno G, Salet C. (1989) Hematoporphyrin derivative (Photofrin II) photosensitization of isolated mitochondria: Inhibition of ADP/ATP translocator. J. Photochem. Photobiol. 4:35–46.

    Article  CAS  Google Scholar 

  21. Saetzler RK, Jallo J, Lehr HA, Phillips CM, Vasthare U, Arfors KE, Tuma RF. (1997) Intravital fluorescence microscopy: Impact of light-induced phototoxicity on adhesion of fluorescently labeled leukocytes. J. Histochem. Cytochem. 45:505–513.

    Article  CAS  PubMed  Google Scholar 

  22. Shea CR, Sherwood ME, Flotte TJ, Chen N, Scholz M, Hasan T. (1990) Rhodamine 123 phototoxicity in laser-irradiated MGH-U1 human carcinoma cells studied in vitro by electron microscopy and confocal laser scanning microscopy. Cancer Res. 50:4167–4172.

    PubMed  CAS  Google Scholar 

  23. Gulliya KS, Matthews JL, Fay JK, Dowben RM. (1988) Increased survival of normal cells during laser photodynamic therapy: implications for ex vivo autologous bone marrow purging. Life Sci. 42:2651–2656.

    Article  CAS  PubMed  Google Scholar 

  24. Munday AD, Sriratana A, Hill JS, Kahl SB, Nagley P. (1996) Mitochondria are the functional intracellular target for a photosensitizing boronated porphyrin. Biochem. Biophys. Acta 1411:1–4.

    Article  Google Scholar 

  25. Fiek C, Benz R, Roos N, Brdiczka D. (1982) Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat-liver mitochondria. Biochim. Biophys. Acta 688:429–440.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson BD, Kabir F. (1986) The role of the mitochondrial outer membrane in energy metabolism of tumor cells. Biochemie 68:407–415.

    Article  CAS  Google Scholar 

  27. Nakashima RA, Scott LJ, Pedersen PL. (1986) The role of mitochondrial hexokinase binding in the abnormal energy metabolism of tumor cell lines. Ann. N. Y. Acad. Sci. 488:438–450.

    Article  CAS  PubMed  Google Scholar 

  28. Taketani S, Kohno H, Furukawa T, Tokunaga R. (1995) Involvement of peripheral-type benzodiazepine receptors in the intracellular transport of heme and porphyrins. J. Biochem. 117:875–880.

    Article  CAS  PubMed  Google Scholar 

  29. Ratcliffe SL, Matthews EK. (1995) Modification of the photodynamic action of delta-aminolaevulinic acid (ALA) on rat pancreatoma cells by mitochondrial benzodiazepine receptor ligands. Br. J. Cancer 71:300–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinnally KW, Zorov DB, Antonenk YN, Snyder SH, McEnery MW, Tedeschi H. (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc. Natl. Acad. Sci. U.S.A. 90:1374–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krueger KE, Papadopolous V. (1990) Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J. Biol. Chem. 265:15015–15022.

    PubMed  CAS  Google Scholar 

  32. LeQuoc K, LeQuoc D. (1988) Involvement of the ADP/ATP carrier in calcium-induced perturbation of the mitochondrial inner membrane permeability: Importance of the orientation of the nucleotide binding sites. Arch. Biochem. 265:249–257.

    Article  CAS  Google Scholar 

  33. Moreno SR, Brako C, Gutierrez J, Newman AH, Chiang PK. (1991) Release of Ca2+ from heart and kidney mitochondria by peripheral-type benzodiazepine receptor ligands. Int. J. Biochem. 23:207–213.

    Article  Google Scholar 

  34. Salet C, Moreno G, Vinzens F. (1983) Effects of photodynamic action on energy coupling of Ca2+ uptake in liver mitochondria. Biochem. Biophys. Res. Commun. 115:76–81.

    Article  CAS  PubMed  Google Scholar 

  35. Zwizinski CW, Hho S. (1992) Peroxidative damage to cardiac mitochondria; Identification and purification of modified adenine nucleotide translocase. Arch. Biochem. Biophys. 294:178–183.

    Article  CAS  PubMed  Google Scholar 

  36. Hill JS, Kohl SB, Kaye AH, et al. (1992) Selective tumor uptake of a boronated porphyrin in an animal model of cerebral glioma. Proc. Natl. Acad. Sci. U.S.A. 89:1785–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Starosta-Rabinstein S, Ciliax BJ, Penney JB, McKeever P, Young AB. (1987) Imaging of a glioma using peripheral benzodiazepine receptor ligands. Proc. Natl. Acad. Sci. U.S.A. 84:891–895.

    Article  Google Scholar 

  38. Katz Y, Ben-Baruch G, Kloog Y, Menczer J, and Gavish M. (1990) Increased density of peripheral benzodiazepine-binding sites in ovarian carcinomas as compared with benign ovarian tumours and normal ovaries. Clin. Sci. (Colch.) 78:155–158.

    Article  CAS  Google Scholar 

  39. Katz Y, Eitan A, and Gavish M. (1990) Increase in peripheral benzodiazepine binding sites in colonic adenocarcinoma. Oncology 47:139–142.

    Article  CAS  PubMed  Google Scholar 

  40. Batra S, and Alenfall J. (1994) Characterization of peripheral benzodiazepine receptors in rat prostatic adenocarcinoma. Prostate 24:269–278.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by USPHS grant DA-00266, Research Scientist Award DA-00074 to S.H.S., ES-07076 to J.R.W., and a grant of the W.M. Keck Foundation (S.H.S.). A.V. was supported by a grant from The Defense and Veterans Head Injury Program.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. H. Snyder.

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Army or the Department of Defense.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, A., Facchina, S.L., Hirsch, D.J. et al. Photodynamic Tumor Therapy: Mitochondrial Benzodiazepine Receptors as a Therapeutic Target. Mol Med 4, 40–45 (1998). https://doi.org/10.1007/BF03401728

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401728

Keywords

Navigation