Skip to main content
Log in

Functional γδ T-lymphocyte Defect Associated with Human Immunodeficiency Virus Infections

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Antiviral cellular immune responses may influence immunological homeostasis in HIV-infected persons. Recent data indicate that Vγ9/Vδ2 T lymphocytes display potent cytotoxic activities against human cells infected with certain viruses including HIV. Understanding the role of γδ T cells in the course of HIV infection may be helpful for designing novel treatment strategies for HIV-associated disorders.

Materials and Methods

The constitutive recognition of Daudi cells and monoethyl pyrophosphate (Etpp) by peripheral blood Vγ9/Vδ2 T cells was assessed using a proliferation assay. The cytotoxicity of Daudi-stimulated lymphocyte populations was measured by chromium release assays. The HIV infectivity for γδ T cell clones was determined by measuring the levels of HTV p24 in cell supernatants. The effect of in vitro HIV-infection on cytokine mRNA production by γδ T cell clones was assessed by PCR.

Results

The constitutive proliferative responses of peripheral blood Vγ9/Vδ2 T cells and the lytic functions of Daudi-expanded lymphoid cells from HTV+ persons were substantially diminished in comparison with those of HlV-seronegative persons. These alterations were present in asymptomatic HIV+ persons prior to substantial αβ CD4+ T cell loss. Productive fflV infection of γδ T cells in vitro had no measurable effect either on their proliferative response to Daudi stimuli or on the expression of cytokine mRNAs for IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-13.

Conclusions

The constitutive responsiveness of Vγ9/Vδ2 T lymphocytes to Daudi and Etpp is severely altered in HIV+ persons. HTV infection of γδ T cells in vitro does not substantially change their cytokine expression or antigenic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pantaleo G, Fauci AS. (1995) New concepts in the immunopathogenesis of HIV infection. Annu. Rev. Immunol. 13: 487–512.

    Article  CAS  PubMed  Google Scholar 

  2. Daar ES, Moudgil T, Meyer RD, Ho DD. (1991) Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N. Engl. J. Med. 324: 961–964.

    Article  CAS  PubMed  Google Scholar 

  3. Clark SJ, Saag MS, Decker WD, et al. (1991) High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N. Engl. J. Med. 324: 961–964.

    Article  Google Scholar 

  4. Tindall B, Cooper DA. (1991) Primary HIV infection: Host responses and intervention strategies. AIDS 5: 1–14.

    Article  CAS  PubMed  Google Scholar 

  5. Wei X, Ghosh SK, Taylor ME, et al. (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373: 117–122.

    Article  CAS  PubMed  Google Scholar 

  6. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373: 123–126.

    Article  CAS  PubMed  Google Scholar 

  7. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. (1996) HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271: 1582–1586.

    Article  CAS  PubMed  Google Scholar 

  8. Dalgleish AG, Malkovsky M. (1988) AIDS and the new viruses. In: Webster ADB (ed) Immunodeficiency and Disease. Kluwer Academic Publishers, London, pp. 1–24.

    Google Scholar 

  9. Fauci AS, Lane HC. (1994) Human immunodeficiency virus (HIV) disease. AIDS and related disorders. In: Isselbacher KJ, Braunwald E, Wilson JD, Martin JB, Fauci AS, Kasper DL (eds) Harrison’s Principles of Internal Medicine. McGraw-Hill, Inc., New York, pp. 1566–1618.

    Google Scholar 

  10. Wallace M, Malkovsky M, Carding S. (1995) Gamma/delta T lymphocytes in viral infections. J. Leukoc. Biol. 58: 277–283.

    Article  CAS  PubMed  Google Scholar 

  11. Lanier LL, Ruitemberg J, Bolhuis RHL, Borst J, Phillips J, Testi R. (1988) Structural and serological heterogeneity of γδ T cell antigen receptor expression in thymus and peripheral blood. Eur. J. Immunol. 18: 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  12. Groh V, Porcelli S, Fabbi M, et al. (1989) Human lymphocytes bearing T-cell receptor 70 γδ are phenotypically diverse and evenly distributed throughout the lymphoid system. J. Exp. Med. 169: 1277–1294.

    Article  CAS  PubMed  Google Scholar 

  13. Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K. (1991) A major fraction of human intraepithelial lymphocytes simultaneously expresses the γδ T cell receptor, the CD8 accessory molecule and preferentially uses the Vδ1 gene segment. Eur. J. Immunol. 21: 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  14. Parker CM, Groh V, Band H, et al. (1990) Evidence for extrathymic changes in the T cell receptor γδ repertoire. J. Exp. Med. 171: 1597–1612.

    Article  CAS  PubMed  Google Scholar 

  15. Haas W, Pereira P, Tonegawa S. (1993) Gamma/delta cells. Annu. Rev. Immunol. 11: 637–685.

    Article  CAS  PubMed  Google Scholar 

  16. Morita CT, Beckman EM, Bukowski JF, et al. (1995) Direct presentation of nonpeptideprenyl pyrophosphate antigens to human γδ T cells. Immunity 3: 495–507.

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR. (1995) Natural and synthetic nonpeptide antigens recognized by human γδ T cells. Nature 375: 155–158.

    Article  CAS  PubMed  Google Scholar 

  18. Wallace M, Bartz SR, Chang W-L, MacKenzie D, Pauza CD, Malkovsky M. (1996) γδ T lymphocyte responses to human immunodeficiency virus. Clin. Exp. Immunol. 103: 177–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malkovsky M. (1992) The function and specificity of γδ T cells. Vaccine Res. 1: 183–191.

    Google Scholar 

  20. Malkovsky M, Bartz SR, MacKenzie D, et al. (1992) Are γδ T cells important for the elimination of virus-infected cells? J. Med. Primatol. 21: 113–118.

    PubMed  CAS  Google Scholar 

  21. Maccario R, Revello MG, Comoli P, Montagna D, Locatelli F, Gerna G. (1993) HLA-unrestricted killing of HSV-1 infected mononuclear cells. J. Immunol. 150: 1437–1445.

    PubMed  CAS  Google Scholar 

  22. Bukowski JF, Morita CT, Brenner MB. (1994) Recognition and destruction of virus-infected cells by human γδ CTL. J. Immunol. 153: 5133–5140.

    PubMed  CAS  Google Scholar 

  23. Lusso P, Garzino-Demo A, Crowley RW, Mainau MS. (1995) Infection of γδ T lymphocytes by human herpesvirus 6: Transcriptional induction of CD4 and susceptibility to HIV infection. J. Exp. Med. 181: 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  24. Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P. (1989) T cell receptor γ/δ+ lymphocyte subsets during HIV infection. Clin. Exp. Immunol. 75: 206–210.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. De Paoli P, Gennari D, Martelli P, et al. (1991) A subset of γδ T lymphocytes is increased during HIV-1 infection. Clin. Exp. Immunol. 83: 187–191.

    Google Scholar 

  26. De Maria A, Ferrazin A, Ferrini S, Ciccone E, Terragna A, Moretta L. (1991) Selective increase of a subset of T cell receptor γδ T lymphocytes in the peripheral blood of patients with human immunodeficiency virus type 1 infection. J. Infect. Dis. 165: 917–919.

    Google Scholar 

  27. Hinz T, Wesch D, Friese K, Reckziegel A, Arden B, Kabelitz D. (1994) T cell receptor γδ repertoire in HIV-1-infected individuals. Eur. J. Immunol. 24: 3044–3049.

    Article  CAS  PubMed  Google Scholar 

  28. Boullier S, Cochet M, Poccia F, Gougeon M-L. (1995) CDR3-independent γδ Vδ1+ T cell expansion in the peripheral blood of HIV-infected persons. J. Immunol. 154: 1418–1431.

    PubMed  CAS  Google Scholar 

  29. Fisch P, Malkovsky M, Braakman E, et al. (1990) γδ T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complex-restricted cytolysis. J. Exp. Med. 171: 1567–1579.

    Article  CAS  PubMed  Google Scholar 

  30. Fisch P, Malkovsky M, Kovats S, et al. (1990) Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250: 1269–1273.

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka Y, Sano S, Nieves E, et al. (1994) Nonpeptide ligands for human γδ T cells. Proc. Natl. Acad. Sci. U.S.A. 91: 8175–8179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scharko AM, Graziano FM, Malkovsky M, Pauza CD, Wallace M. (1995) Persistent non-B cell lymphocytosis in HIV infected individuals. Immunol. Lett. 48: 157–158.

    Article  CAS  PubMed  Google Scholar 

  33. Malkovsky M, Asherson GL, Stockinger B, Watkins MC. (1982) Nonspecific inhibitor released by T acceptor cells reduces the production of interleukin-2. Nature 300: 652–655.

    Article  CAS  PubMed  Google Scholar 

  34. Klein E, Klein G, Nadkarni JS, Nadkarni JJ, Wigzell H, Clifford P. (1968) Surface IgM-kappa specificity on a Burkitt Lymphoma cell in vivo and in derived culture lines. Cancer Res. 28: 1300–1310.

    PubMed  CAS  Google Scholar 

  35. Pulvertaft RJV. (1964) Cytology of Burkitt’s tumour (African lymphoma). Lancet i: 238–240.

    Article  Google Scholar 

  36. Lozzio CB, Lozzio BB. (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45: 321–334.

    PubMed  CAS  Google Scholar 

  37. Bartz SR, Pauza CD, Ivanyi J, Jindal S, Welch WJ, Malkovsky M. (1994) An Hsp60 related protein is associated with purified HIV and SIV. J. Med. Primatol. 23: 151–154.

    Article  CAS  PubMed  Google Scholar 

  38. Bartz SR, Hohenwalter E, Hu M-K, Rich DH, Malkovsky M. (1995) Inhibition of HIV-1 replication by nonimmunosuppressive analogs of cyclosporin A. Proc. Natl. Acad. Sci. U.S.A. 92: 5381–5385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chomczynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  40. Fujihashi K, Yamamoto M, McGhee JR, Kiyono H. (1993) γδ T cell receptor-positive intraepithelial lymphocytes with CD4+, CD8 and CD4+, CD8+ phenotypes from orally immunized mice provide Th-2 like function for B cell responses. J. Immunol. 151: 6681–6691.

    PubMed  CAS  Google Scholar 

  41. Fujihashi K, Yamamoto M, Hiroi T, Barnberg TV, McGhee JR, Kiyono H. (1996) Selected Th1 and Th2 cytokine mRNA expression by CD4+ T cells isolated from inflamed human gingival tissues. Clin. Exp. Immunol. 103: 422–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H. (1995) Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J. Immunol. 154: 998–1006.

    PubMed  CAS  Google Scholar 

  43. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R. (1986) The T4 gene encodes the AIDS virus receptor ansis expressed in the immune system and the brain. Cell 47: 333–348.

    Article  CAS  PubMed  Google Scholar 

  44. Malkovsky M, Philpott K, Dalgleish AG, et al. (1988) Infection of B lymphocytes by the human immunodeficiency virus and their susceptibility to cytotoxic cells. Eur. J. Immunol. 18: 1315–1321.

    Article  CAS  PubMed  Google Scholar 

  45. Janssen O, Wesselborg S, Heckl-Ostreicher B, et al. (1991) T cell receptor/CD3-signaling induces death by apoptosis in human T cell receptor γδ+ T cells. J. Immunol. 146: 35–39.

    PubMed  CAS  Google Scholar 

  46. Kabelitz D, Pechhold K, Bender A, et al. (1991) Activation and activation-driven death of human γδ T cells. Immunol. Rev. 120: 71–88.

    Article  CAS  PubMed  Google Scholar 

  47. Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V, Fournie J-J, Gougeon M-L. (1996) Peripheral Vγ9/Vδ2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J. Immunol. 157: 449–461.

    PubMed  CAS  Google Scholar 

  48. Wesch D, Kabelitz D, Friese K, Pechhold K. (1996) Mycobacteria-reactive γδ T cells in HIV-infected individuals: Lack of Vγ9 cell responsiveness is due to deficiency of antigen-specific CD4 T helper type 1 cells. Eur. J. Immunol. 26: 557–562.

    Article  CAS  PubMed  Google Scholar 

  49. Gan Y-H, Pauza CD, Malkovsky M. (1995) γδ T cells in rhesus monkeys and their response to simian immunodeficiency virus (SIV) infection. Clin. Exp. Immunol. 102: 251–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Franklin M. Graziano, and H. Goldstein for their help in obtaining human blood samples, Dr. M. Merle Elloso for helpful discussion, and Ms. K. Elmer for assistance with flow cytometry. This work was supported by grants from the NIH and the Tracy, Jamie and Dawn Ruhrup Memorial Virus Research Fund. This is publication no. 36–052 of WRPRC.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, M., Scharko, A.M., Pauza, C.D. et al. Functional γδ T-lymphocyte Defect Associated with Human Immunodeficiency Virus Infections. Mol Med 3, 60–71 (1997). https://doi.org/10.1007/BF03401668

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401668

Keywords

Navigation