Skip to main content
Log in

Inherited Resistance to HIV-1 Conferred by an Inactivating Mutation in CC Chemokine Receptor 5: Studies in Populations with Contrasting Clinical Phenotypes, Defined Racial Background, and Quantified Risk

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

CC chemokine receptor 5 (CCR5) is a cell entry cofactor for macrophage-tropic isolates of human immunodeficiency virus-1 (HIV-1). Recently, an inactive CCR5 allele (designated here as CCR5-2) was identified that confers resistance to HIV-1 infection in homozygotes and slows the rate of progression to AIDS in heterozygotes. The reports conflict on the effect of heterozygous CCR5-2 on HIV-1 susceptibility, and race and risk levels have not yet been fully analyzed. Here we report our independent identification of CCR5-2 and test its effects on HIV-1 pathogenesis in individuals with contrasting clinical outcomes, defined race, and quantified risk.

Materials and Methods

Mutant CCR5 alleles were sought by directed heteroduplex analysis of genomic DNA from random blood donors. Genotypic frequencies were then determined in (1) random blood donors from North America, Asia, and Africa; (2) HIV-1 + individuals; and (3) highly exposed-seronegative homosexuals with quantified risk.

Results

CCR5-2 was the only mutant allele found. It was common in Caucasians, less common in other North American racial groups, and not detected in West Africans or Tamil Indians. Homozygous CCR5-2 frequencies differed reciprocally in highly exposed-seronegative (4.5%, n = 111) and HIV-1-seropositive (0%, n = 614) Caucasians relative to Caucasian random blood donors (0.8%, n = 387). This difference was highly significant (p < 0.0001). By contrast, heterozygous CCR5-2 frequencies did not differ significantly in the same three groups (21.6, 22.6, and 21.7%, respectively). A 55% increase in the frequency of heterozygous CCR5-2 was observed in both of two cohorts of Caucasian homosexual male, long-term nonprogressors compared with other HIV-1+ Caucasian homosexuals (p = 0.006) and compared with Caucasian random blood donors. Moreover, Kaplan-Meier estimates indicated that CCR5-2 heterozygous seroconvertors had a 52.6% lower risk of developing AIDS than homozygous wild-type seroconvertors.

Conclusions

The data suggest that homozygous CCR5-2 is an HIV-1 resistance factor in Caucasians with complete penetrance, and that heterozygous CCR5-2 slows the rate of disease progression in infected Caucasian homosexuals. Since the majority (∼96%) of highly exposed-seronegative individuals tested are not homozygous for CCR5-2, other resistance factors must exist. Since CCR5-2 homozygotes have no obvious clinical problems, CCR5 may be a good target for the development of novel antiretroviral therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murphy PM. (1996) Chemokine receptors: Structure, function and role in microbial pathogenesis. Cytokine Growth Fact. Rev. 7: 147–164.

    Article  CAS  Google Scholar 

  2. Dragic T, Litwin V, Allaway GP, et al. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC CKR-5. Nature 381: 667–673.

    Article  CAS  PubMed  Google Scholar 

  3. Alkhatib G, Combadiere C, Broder CC, et al. (1996) CC CKR5: A RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272: 1955–1958.

    Article  CAS  PubMed  Google Scholar 

  4. Choe H, Farzan M, Sun Y, et al. (1996) The 35 β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV isolates. Cell 85: 1135–1148.

    Article  CAS  PubMed  Google Scholar 

  5. Doranz BJ, Rucker J, Yi Y, et al. (1996) A dual tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion co-factors. Cell 85: 1149–1158.

    Article  CAS  PubMed  Google Scholar 

  6. Deng H, Liu R, Ellmeier W, et al. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381: 661–666.

    Article  CAS  PubMed  Google Scholar 

  7. Feng Y, Broder CC, Kennedy PE, Berger EA. (1996) HIV-1 entry co-factor: Functional cDNA cloning of a seven-transmembrane G-protein coupled receptor. Science 272: 872–877.

    Article  CAS  PubMed  Google Scholar 

  8. Bleul CC, Farzan M, Choe H, et al. (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382: 829–833.

    Article  CAS  PubMed  Google Scholar 

  9. Oberlin E, Amara A, Bachelerie F, et al. (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382: 833–835.

    Article  CAS  PubMed  Google Scholar 

  10. Liu R, Paxton WA, Choe S, et al. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86: 367–377.

    Article  CAS  PubMed  Google Scholar 

  11. Samson M, Libert F, Doranz BJ, et al. (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382: 722–725.

    Article  CAS  PubMed  Google Scholar 

  12. Dean M, Carrington M, Winkler C, et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273: 1856–1861.

    Article  CAS  PubMed  Google Scholar 

  13. Connor RI, Ho DD. (1994) Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. J. Virol. 68: 4400–4408.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Schuitemaker H, Koot M, Kootstra NA, et al. (1992) Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: Progression of disease is associated with a shift from a monocytotropic to T-cell tropic virus populations. J. Virol. 66: 1354–1360.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Loetscher M, Geiser T, O’Reilly T, Zwahlen R, Baggiolini M, Moser B. (1994) Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J. Biol. Chem. 269: 232–237.

    PubMed  CAS  Google Scholar 

  16. Combadiere C, Ahuja SK, Murphy PM. (1995) Cloning and functional expression of a human eosinophil CC chemokine receptor. J. Biol. Chem. 270: 16491–16494 [Erratum J Biol Chem 270: 30235, 1995].

    Article  CAS  PubMed  Google Scholar 

  17. Kitaura M, Nakajima T, Imai T, et al. (1996) Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC Chemokine Receptor 3. J. Biol. Chem. 271: 7725–7730.

    Article  CAS  PubMed  Google Scholar 

  18. Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS. (1996) Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J. Exp. Med. 183: 2349–2354.

    Article  CAS  PubMed  Google Scholar 

  19. Ponath PD, Qin S, Post TW, et al. (1996) Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J. Exp. Med. 183: 2437–2448.

    Article  CAS  PubMed  Google Scholar 

  20. Combadiere C, Ahuja SK, Tiffany HL, Murphy PM. (1996) Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1 (alpha), MIP-1 (beta), and RANTES. J. Leukocyte Biol. 60: 147–152.

    Article  CAS  PubMed  Google Scholar 

  21. Raport CJ, Gosling J, Schweickart VL, Gray PW, Charo IF. (1996) Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha. J. Biol. Chem. 271: 17161–17166.

    Article  CAS  PubMed  Google Scholar 

  22. Paxton WA, Martin S, Tse D, et al. (1996) Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high risk sexual exposures. Nature Med. 2: 412–417.

    Article  CAS  PubMed  Google Scholar 

  23. Munoz A, Kirby AJ, He YD, et al. (1995) Long-term survivors with HIV-1 infection: Incubation period and longitudinal patterns of CD4+ lymphocytes. Acquir. Immune Deflc. Syndr. Hum. Retrovirol. 8: 496–505.

    Article  CAS  Google Scholar 

  24. Detels R, Liu Z, Hennessey K, et al. (1994) Resistance to HIV-1 infection. Multicenter AIDS Cohort Study. J. Acquir. Immune Defic. Syndr. 7: 1263–1269.

    Article  CAS  PubMed  Google Scholar 

  25. Imagawa DT, Lee MH, Wolinsky SM, et al. (1989) Human immunodeficiency virus type 1 infection in homosexual men who remain seronegative for prolonged periods. N. Engl. J. Med. 320: 1458–1462.

    Article  CAS  PubMed  Google Scholar 

  26. Zimmerman PA, Phadke PM, Lee A, et al. 36 (1995) Migration of a novel DQA1* allele (DQA1*0502) from African origin to North and South America. Hum. Immunol. 42: 233–240.

    Article  CAS  PubMed  Google Scholar 

  27. Zimmerman PA, Steiner LL, Titanji VPK, et al. (1996) Three new DPBI alleles identified in a Bantu-speaking population from central Cameroon. Tissue Antigens 47: 293–299.

    Article  CAS  PubMed  Google Scholar 

  28. Zimmerman PA, Carrington MN, Nutman TB. (1993) Exploiting structural differences among heteroduplex molecules to simplify genotyping the DQA1 and DQB1 alleles in human lymphocyte typing. Nucl. Acids Res. 21: 4541–4547.

    Article  CAS  PubMed  Google Scholar 

  29. Nutman TB, Zimmerman PA, Kubofcik J, Kostyu D. (1994) A universally applicable diagnostic approach to filarial and other infections. Parasitol. Today 10: 239–243.

    Article  CAS  PubMed  Google Scholar 

  30. Ng J, Hurley CK, Baxter-Lowe LA, et al. (1993) Large-scale oligonucleotide typing for HLA-DRB1/3/4 and HLA-DQB1 is highly accurate, specific, and reliable. Tissue Antigens 42: 473–479.

    Article  CAS  PubMed  Google Scholar 

  31. Nussbaum O, Broder CC, Berger EA. (1994) Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J. Virol. 68: 5411–5422.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M. (1996) Molecular cloning and functional expression of a new human CC chemokine receptor gene. Biochemistry 35: 3362–3367.

    Article  CAS  PubMed  Google Scholar 

  33. Ahuja SK, Lee JC, Murphy PM. (1995) CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B. Determinants of high affinity binding and receptor activation are distinct. J. Biol. Chem. 271: 225–232.

    Article  Google Scholar 

  34. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. (1995) Identification of RANTES, MlP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270: 1811–1815.

    Article  CAS  PubMed  Google Scholar 

  35. Miller LH, Mason SJ, Dvorak JA, McGinniss MH, Rothman IK. (1975) Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189: 561–563.

    Article  CAS  PubMed  Google Scholar 

  36. Horuk R, Chitnis CE, Darbonne WC, et al. (1993) The erythrocyte chemokine receptor is a receptor for the malarial parasite Plasmodium vivax. Science 261: 1182–1184.

    PubMed  CAS  Google Scholar 

  37. Horuk R, Wang ZX, Peiper SC, Hesselgesser J. (1994) Identification and characterization of a promiscuous chemokine-binding protein in a human erythroleukemic cell line. J. Biol. Chem. 269: 17730–17733.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this study to Michael Chopek, M.D., our friend and colleage, who died suddenly on October 31, 1996. We thank M. Connor for patient samples; H.C. Lane, L. Schrager, J. Metcalf, S. Vogel, M. Polis, S. McCoy, C. Kleeberger, J. Phair, S. Wu, L. Jacobson, A. Munoz, and M. Majchrowicz for help in obtaining samples and for retrieval of coded clinical information; R. Plishka for DNA sequencing; M. Martin, J. Phair, J. Gallin, and H. Malech for helpful advice; D. Alling, C. Kleeberger, L. Jacobson, and A. Munoz for statistical advice; and the patients and clinical research staff of the MACS centers and the AIDS Clinic, NIAID, for making the DNA samples and clinical data analyzed in this study available. Samples and data provided by the Multicenter AIDS Cohort Study (MACS) were contributed by centers (principal investigators) at Johns Hopkins School of Public Health (A. Saah, A. Munoz, J. Margolick); Harold Brown Health Center and Northwestern University Medical School (J. Phair); University of California, Los Angeles (R. Detels, J.V. Giorgi); and University of Pittsburgh (C. Rinaldo). The MACS is funded by the National Institute of Allergy and Infectious Diseases, with additional supplemental funding from the National Cancer Institute and the Agency for Health Care Policy and Research: UO1-AI-35042, 5-MO1-RR-00722 (GCRC), UO1-AI-35043, UO1-AI-37984, UO1-AI-35039, UO1-AI-37613, UO1-AI-35041.

Author information

Authors and Affiliations

Authors

Additional information

The nucleic acid sequence of CCR5-2 has been deposited in Genbank, #U66285.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerman, P.A., Buckler-White, A., Alkhatib, G. et al. Inherited Resistance to HIV-1 Conferred by an Inactivating Mutation in CC Chemokine Receptor 5: Studies in Populations with Contrasting Clinical Phenotypes, Defined Racial Background, and Quantified Risk. Mol Med 3, 23–36 (1997). https://doi.org/10.1007/BF03401665

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401665

Keywords

Navigation