Skip to main content
Log in

Correction or Transfer of Immunodeficiency Due to TNF-LTα Deletion by Bone Marrow Transplantation

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Mice with inactivated tumor necrosis factor (TNF) and lymphotoxin α (LTα) genes have profound abnormalities of the immune system including lymphocytosis, lack of lymph nodes, undifferentiated spleen, hypoimmunoglobulinaemia, and defective Ig class switch. Here, we asked whether this phenotype is due to incompetent lymphohemopoietic progenitors or to a defective environment.

Materials and Methods

Lethally irradiated TNF-LTα-defident and wild-type mice received bone marrow cells from either TNF-LTα-deficient or wild-type mice. The reconstitution and transfer of the phenotype was followed by morphological and functional analyses.

Results

Bone marrow cells from wild-type mice restored the synthesis of TNF and LTα, corrected the splenic microarchitecture, normalized the lymphocyte counts in the circulation, and repopulated the lamina propria with IgA-producing plasma cells of TNF-LTα-deficient mice. Furthermore, the formation of germinal centers in the spleen and the defective Ig class switch in response to a T-cell dependent antigen was correαed, while no lymph nodes were formed. Conversely, the TNF-LTα phenotype could be transferred to wild-type mice by bone marrow transplantation after lethal irradiation.

Conclusions

These data demonstrate that most TNF- and LTα-producing cells are bone marrow derived and radiosensitive, and that the immunodeficiency due to TNF-LTα deletion can be corrected to a large extent by normal bone marrow cell transplantation. The genotype of the donor bone marrow cells determines the functional and structural phenotype of the TNF-LTα-deficient adult murine host, with the exception of lymph node formation. These findings may have therapeutic implications for the restoration of genetically defined imumunodeficiencies in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aggarwal BB, Vilcek J (eds). Tumor Necrosis Factor, Structure, Function, and Mechanism of Action. Marcel Dekker, New York.

  2. Beutler B (ed). Tumour Necrosis Factor: the Molecules and Their Emerging Role in Medicine. Raven, New York.

  3. Pennica D, Nedwin GE, Hayflick JS, et al. (1984) Human tumour necrosis factor: Precursor structure, expression and homology to lymphotoxin. Nature 312: 724–729.

    Article  CAS  PubMed  Google Scholar 

  4. Pennica D, Hayflick JS, Bringman TS, Palladino MA, Goeddel DV. (1985) Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc. Natl. Acad. Sci. U.S.A. 82: 6060–6064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodwin RG, Alderson MR, Smith CA, et al. (1993) Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 73: 447–456.

    Article  CAS  PubMed  Google Scholar 

  6. Smith CA, Gruss HJ, Davis T, et al. (1993) CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 73: 1349–1360.

    Article  CAS  PubMed  Google Scholar 

  7. Suda T, Takahashi T, Golstein P, Nagata S. (1993) Molecular cloning and expression of the fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  8. Loetscher H, Pan YC, Lahm HW, et al. (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61: 351–359.

    Article  CAS  PubMed  Google Scholar 

  9. Schall TJ, Lewis M, Koller KJ, et al. (1990) Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61: 361–370.

    Article  CAS  PubMed  Google Scholar 

  10. Beutler B, van Huffel C. (1994) Unraveling function in the TNF ligand and receptor families. Science 264: 667–668.

    Article  CAS  PubMed  Google Scholar 

  11. Pfeffer K, Matsuyama T, Kundig TM, et al. (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457–467.

    Article  CAS  PubMed  Google Scholar 

  12. Rothe J, Lesslauer W, Lotscher H, et al. (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364: 798–802.

    Article  CAS  PubMed  Google Scholar 

  13. Erickson SL, de Sauvage FJ, Kikly K, et al. (1994) Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2–deficient mice. Nature 372: 560–563.

    Article  CAS  PubMed  Google Scholar 

  14. Androlewicz MJ, Browning JL, Ware CF. (1992) Lymphotoxin is expressed as a heteromeric complex with a distinct 33-kDa glycoprotein on the surface of an activated human T cell hybridoma. J. Biol. Chem. 267: 2542–2547.

    PubMed  CAS  Google Scholar 

  15. Crowe PD, VanArsdale TL, Waker BN, et al. (1994) A lymphotoxin-β-specific receptor. Science 264: 707–710.

    Article  CAS  PubMed  Google Scholar 

  16. Baens M, Chaffanet M, Cassiman JJ, van-den-Berghe H, Marynen P. (1993) Construction and evaluation of a hncDNA library of human 12p transcribed sequences derived from a somatic cell hybrid. Genomics 16: 214–218.

    Article  CAS  PubMed  Google Scholar 

  17. De Togni P, Goellner J, Ruddle NH, et al. (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lym-photoxin. Science 264: 703–707.

    Article  PubMed  Google Scholar 

  18. Eugster HP, Muller M, Karrer U, et al. (1996) Multiple immune abnormalities in tumor necrosis factor and lymphotoxin α double deficient mice. Int. Immunol. 8: 23–26.

    Article  CAS  PubMed  Google Scholar 

  19. Espevik T, Nissen-Meyer J. (1986) A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J. Immunol. Methods 95: 99–105.

    Article  CAS  PubMed  Google Scholar 

  20. Kelso A, Glasebrook AL, Kanagawa O, Brunner KT. (1982) Production of macrophage-activating factor by T lymphocyte clones and correlation with other lymphokine activities. J. Immunol. 129: 550–561.

    PubMed  CAS  Google Scholar 

  21. Kelly BS, Levy JG, Sikora L. (1979) The use of the enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of specific antibody from cell cultures. Immunology 37: 45–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Ryffel B, Car BD, Gunn H, Roman D, Hiestand P, Mihatsch MJ. (1994) Interleukin-6 exacerbates glomerulonephritis in (NZB × NZW)F1 mice. Am. J. Pathol. 144: 927–937.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Vassalli P. (1992) The pathophysiology of tumor necrosis factor. Annu. Rev. Immunol 10: 411–452.

    Article  CAS  PubMed  Google Scholar 

  24. Hunt JS, Chen HL, Hu XL, Chen TL, Morrison DC. (1992) Tumor necrosis factor-α gene expression in the tissues of normal mice. Cytokine 4: 340–346.

    Article  CAS  PubMed  Google Scholar 

  25. Freudenberg N, Freudenberg MA, Hoess CD, Schrecker H, Galanos C. (1986) Investigation into the origin of mouse liver sinusoidal cells. Virchows Arch. A Pathol. Anat. Histopathol. 410: 1–7.

    Article  CAS  PubMed  Google Scholar 

  26. Banks TA, Rouse BT, Kerley MK, et al. (1995) Lymphotoxin-α-deficient mice: Effects on secondary lymphoid organ development and humoral immune responsiveness. J. Immunol. 155: 1685–1693.

    PubMed  CAS  Google Scholar 

  27. Miyawaki S, Nakamura Y, Suzuka H, et al. (1994) A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur. J. Immunol. 24: 429–434.

    Article  CAS  PubMed  Google Scholar 

  28. Castigli E, Ah FW, Davidson L, et al. (1994) CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc. Natl. Acad. Sci. U.S.A. 91: 12135–12139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Renshaw BR, Fanslow WC, Armitage RJ, et al. (1994) Central role of CD40 and its ligand in B lymphocyte responses to T-dependent antigens. J. Exp. Med. 180: 1889–1900.

    Article  CAS  PubMed  Google Scholar 

  30. Ghiara P, Boraschi D, Nencioni L, Ghezzi P, Tagliabue A. (1987) Enhancement of in vivo immune response by tumor necrosis factor. J. Immunol. 139: 3676–3679.

    PubMed  CAS  Google Scholar 

  31. Aversa G, Punnonen J, de-Vries JE. (1993) The 26-kD transmembrane form of tumor necrosis factor alpha on activated CD4+ T cell clones provides a costimulatory signal for human B cell activation. J. Exp. Med. 177: 1575–1585.

    Article  CAS  PubMed  Google Scholar 

  32. Del-Prete G, De-Carli M, D’Elios MM, et al. (1994) Polyclonal B cell activation induced by herpesvirus saimiri-transformed human CD4+ T cell clones. Role for membrane TNF-alpha/TNF-alpha receptors and CD2/CD58 interactions. J. Immunol. 153: 4872–4879.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work and M. Müller were supported by the Swiss National Science Foundation Grant 32–33966.92.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Eugster, HP., Le Hir, M. et al. Correction or Transfer of Immunodeficiency Due to TNF-LTα Deletion by Bone Marrow Transplantation. Mol Med 2, 247–255 (1996). https://doi.org/10.1007/BF03401621

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401621

Navigation