Skip to main content
Log in

An Inhibitor of Macrophage Arginine Transport and Nitric Oxide Production (CNI-1493) Prevents Acute Inflammation and Endotoxin Lethality

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Nitric oxide (NO), a small effector molecule produced enzymatically from L-arginine by nitric oxide synthase (NOS), is a mediator not only of important homeostatic mechanisms (e.g., blood vessel tone and tissue perfusion), but also of key aspects of local and systemic inflammatory responses. Previous efforts to develop inhibitors of NOS to protect against NO-mediated tissue damage in endotoxin shock have been unsuccessful, largely because such competitive NOS antagonists interfere with critical vasoregulatory NO production in blood vessels and decrease survival in endotoxemic animals. Accordingly, we sought to develop a pharmaceutical approach to selectively inhibit NO production in macrophages while sparing NO responses in blood vessels.

Materials and Methods

The processes of cytokine-inducible L-arginine transport and NO production were studied in the murine macrophage-like cell line (RAW 264.7). A series of multivalent guanylhydrazones were synthesized to inhibit cytokine-inducible L-arginine transport. One such compound (CNI-1493) was studied further in animal models of endothelial-derived relaxing factor (EDRF) activity, carrageenan inflammation, and lethal lipopolysaccharide (LPS) challenge.

Results

Upon activation with cytokines, macrophages increase transport of L-arginine to support the production of NO by NOS. Since endothelial cells do not require this additional arginine transport to produce NO, we reasoned that a competitive inhibitor of cytokine-inducible L-arginine transport would not inhibit EDRF activity in blood vessels, and thus might be effectively employed against endotoxic shock. CNI-1493, a tetravalent guanylhydrazone, proved to be a selective inhibitor of cytokine-inducible arginine transport and NO production, but did not inhibit EDRF activity. In mice, CNI-1493 prevented the development of carrageenan-induced footpad inflammation, and conferred protection against lethal LPS challenge.

Conclusions

A selective inhibitor of cytokine-inducible L-arginine transport that does not inhibit vascular EDRF responses is effective against endotoxin lethality and significantly reduces inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tracey KJ. (1991) Tumor necrosis factor (cachectin) in the biology of septic shock syndrome. Circ. Shock 35: 123–128.

    PubMed  CAS  Google Scholar 

  2. Tracey KJ, Lowry SF. (1990) The role of cytokine mediators in septic shock. Adv. Surg. 23: 21–56.

    PubMed  CAS  Google Scholar 

  3. Bredt DS, Snyder SH. (1994) Nitric oxide: A physiologic messenger molecule. Ann. Rev. Biochem. 63: 175–195.

    Article  CAS  PubMed  Google Scholar 

  4. Geller DA, Nussler AK, DiSilvio M, et al. (1993) Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 90: 522–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tracey KJ, Vlassara H, Cerami A. (1989) Cachectin/TNF (tumour necrosis factor). Lancet 1: 1122–1126.

    Article  CAS  PubMed  Google Scholar 

  6. Moncada S, Higgs A. (1993) The L-argininenitric oxide pathway. N. Engl. J. Med. 329: 2001–2012.

    Article  Google Scholar 

  7. Nathan C. (1992) Nitric oxide as a secretory product of mammalian cells. F.A.S.E.B. J. 6: 3051–3064.

    CAS  Google Scholar 

  8. Weinberg JB, Granger DL, Pisetsky DS, et al. (1994) The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: Increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J. Exp. Med. 179: 651–660.

    Article  CAS  PubMed  Google Scholar 

  9. McCartney-Francis N, Allen JB, Mizel DE, et al. (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178: 749–754.

    Article  CAS  PubMed  Google Scholar 

  10. Billiar TR, Curran RD, Harbrecht BG, Steuhr DJ, Demetris AJ, Simmons RL. (1990) Modulation of nitrogen oxide synthesis in vivo: NG monomethyl-L-arginine inhibits endotoxin-induced nitrite/nitrate biosynthesis while promoting hepatic damage. J. Leukocyte Biol. 48: 565–569.

    Article  CAS  PubMed  Google Scholar 

  11. Shultz PJ, Baij L. (1992) Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J. Clin. Invest. 90: 1718–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nava E, Palmer RMJ, Moncada S. (1991) Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet 338: 1555–1557.

    Article  CAS  PubMed  Google Scholar 

  13. Cobb JP, Natanson C, Hoffman WD, et al. (1992) NG-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J. Exp. Med. 176: 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  14. Minnard EA, Shou J, Naama H, Cech A, Gallagher H, Daly JM. (1994) Inhibition of nitric oxide synthesis is detrimental during endotoxemia. Arch. Surg. 129: 142–148.

    Article  CAS  PubMed  Google Scholar 

  15. Statman R, Cheng W, Cunningham JN, et al. (1994) Nitric oxide inhibition in the treatment of the sepsis syndrome is detrimental to tissue oxygenation. J. Surg. Res. 57: 93–98.

    Article  CAS  PubMed  Google Scholar 

  16. Ulrich P, Cerami A. (1984) Trypanocidal 1,3-arylene dike tone bis (guanylhydrazone)s. Structure-activity relationships among substituted and heterocyclic analogues. J. Med. Chem. 27: 35–40.

    Article  CAS  PubMed  Google Scholar 

  17. Vodovotz Y, Kwon NS, Pospischil M, Manning J, Paik J, Nathan C. (1994) Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophage with IFN-gamma and bacterial lipopolysaccharide. J. Immunol. 152: 4110–4118.

    PubMed  CAS  Google Scholar 

  18. Bogle RG, Baydoun AR, Pearson JD, Moncada S, Mann GE. (1992) L-arginine transport is increased in macrophages generating nitric oxide. Biochem. J. 284: 15–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baydoun AR, Bogle RG, Pearson JD, Mann GE. (1993) Arginine uptake and metabolism in cultured murine macrophages. Agents Actions 38: C127–C129.

    Article  CAS  PubMed  Google Scholar 

  20. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714–718.

    Article  CAS  PubMed  Google Scholar 

  21. Tracey KJ, Beutler B, Lowry SF, et al. (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474.

    Article  CAS  PubMed  Google Scholar 

  22. Otterness IV, Moore PF. (1988) Carrageenan foot edema test. Methods Enzymol. 162: 320–327.

    Article  CAS  PubMed  Google Scholar 

  23. Bernhagen J, Calandra T, Mitchell RA, et al. (1993) Macrophage migration inhibitory factor (MIF) is a pituitary-derived cytokine and potentiates lethal endotoxaemia. Nature 365: 756–769.

    Article  CAS  PubMed  Google Scholar 

  24. Ding AH, Nathan CF, Stuehr DJ. (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 141: 2407–2412.

    PubMed  CAS  Google Scholar 

  25. Nussler AK, Billiar TR, Liu Z, Morris Jr SM. (1994) Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. J. Biochem. 269: 1257–1261.

    CAS  Google Scholar 

  26. Granger DL, Hibbs Jr JB, Perfect JR, Durack DT. (1990) Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J. Clin. Invest. 85: 264–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hibbs Jr JB, Taintor RR, Vavrin Z. (1987) Macrophage cytotoxicity: Role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235: 473–476.

    Article  CAS  PubMed  Google Scholar 

  28. Granger DL, Taintor RR, Cook JL, Hibbs Jr JB. (1980) Injury of neoplastic cells by murine macrophages leads to inhibition of motochondrial respiration. J. Clin. Invest. 65: 357–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sessa WC, Hecker M, Mitchell JA, Vane JR. (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 87: 8607–8611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR. (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: Cultured endothelial cells recycle L-citrulline to L-arginine. Proc. Natl. Acad. Sci. U.S.A. 87: 8612–8616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nussler A, Billiar T, Liu Z, Morris S. (1994) Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. J. Biol. Chem. 269: 1257–1261.

    PubMed  CAS  Google Scholar 

  32. Baydoun AR, Bogle RG, Pearson JD, Mann GE. (1994) Discrimination between citrulline and arginine transport in activated murine macrophages: Inefficient synthesis of NO from recycling of citrulline to arginine. Br. J. Pharmacol. 112: 487–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hrabak A, Idei M, Temesi A. (1994) Arginine supply for nitric oxide synthesis and arginase is mainly exogenous in elicited murine and rat macrophages. Life Sci. 55: 797–805.

    Article  CAS  PubMed  Google Scholar 

  34. Wu G, Brosnan JT. (1992) Macrophages can convert citrulline into arginine. Biochem. Biophysical. Res. Commun. 281: 45–48.

    CAS  Google Scholar 

  35. Sato H, Fujiwara M, Bannai S. (1992) Effect of lipopolysaccharide on transport and metabolism of arginine in mouse peritoneal macrophages. J. Leukocyte Biol. 52: 161–164.

    Article  CAS  PubMed  Google Scholar 

  36. Mills CD, Shearer J, Evans R, Caldwell MD. (1992) Macrophage arginine metabolism and the inhibition of stimulation of cancer. J. Immunol. 149: 2709–2714.

    PubMed  CAS  Google Scholar 

  37. Hasan K, Heesen BJ, Corbett JA, et al. (1993) Inhibition of nitric oxide formation by guanidines. Eur. J. Pharmacol. 249: 101–106.

    Article  CAS  PubMed  Google Scholar 

  38. MacAllister RJ, Whitley GSJ, Vallance P. (1994) Effects of guanidino and uremic compounds on nitric oxide pathways. Kidney Int. 45: 737–742.

    Article  CAS  PubMed  Google Scholar 

  39. Kilbourn RG, Gross SS, Jubran A, et al. (1990) Ng-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: Implications for the involvement of nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 87: 3629–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cobb JP, Cunnion RE, Danner RL. (1993) Nitric oxide as a target for therapy in septic shock. Crit. Care Med. 21: 1261–1263.

    Article  CAS  PubMed  Google Scholar 

  41. Closs EI, Lyons CR, Kelly C, Cunningham JM. (1993) Characterization of the third member of the MCAT family of cationic amino acid transporters. J. Biol. Chem. 268: 20796–20800.

    PubMed  CAS  Google Scholar 

  42. Albina JA, Caldwell MD, Henry Jr WL, Mills CD. (1989) Regulation of macrophage functions by L-arginine. J. Exp. Med. 169: 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  43. Tracey KJ. (1992) The acute and chronic pathophysiological effects of TNF: Mediation of septic shock and wasting (cachexia). In: Beutler B (ed). Tumor Necrosis Factors: The Molecules and Their Emerging Role in Medicine. Raven Press, New York, pp. 255–273.

    Google Scholar 

  44. Tracey KJ, Fong Y, Hesse DG, et al. (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664.

    Article  CAS  PubMed  Google Scholar 

  45. Ialenti A, Ianaro A, Moncada S, DiRosa M. (1992) Modulation of acute inflammation by endogenous nitric oxide. Eur. J. Pharmacol. 211: 177–182.

    Article  CAS  PubMed  Google Scholar 

  46. Ianaro A, O’Donnell CA, Di Rosa M, Liew FY. (1994) A nitric oxide synthase inhibitor reduces inflammation, down-regulates inflammatory cytokines and enhances interleukin-10 production in carrageenin-induced oedema in nice. Immunology 82: 370–375.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Van Dervort AL, Yan L, Madara PJ, et al. (1994) Nitric oxide regulates endotoxin-in-Contributed by A. Cerami on January 18, 1995. duced TNF-alpha production by human neutrophils. J. Immunol. 152: 4102–4109.

    PubMed  Google Scholar 

  48. Tracey KJ, Cerami A. (1994) Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Annu. Rev. Med. 45: 491–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health Grant R01DK49283 (KT), a Faculty Fellowship Award from the American College of Surgeons (KT), a grant from Cytokine Network Inc., and Institutional Funding from the Picower Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, M., Ulrich, P., Bloom, O. et al. An Inhibitor of Macrophage Arginine Transport and Nitric Oxide Production (CNI-1493) Prevents Acute Inflammation and Endotoxin Lethality. Mol Med 1, 254–266 (1995). https://doi.org/10.1007/BF03401550

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401550

Navigation