Skip to main content
Log in

Some Novel Aspects of the Pyrometallurgy and Vapometallurgy of Nickel

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Two innovations in the extractive metallurgy of nickel are described. One is the introduction of the top blown rotary converter (TBRC) to the nonferrous smelting industry for iron slagging and metal making. The other is the application of the Inco Pressure Carbonyl (IPC) process to a wide variety of metallurgical feed materials for the recovery of pure nickel, cobalt and iron.

These and other procedures will be integrated in a new $80-million refinery, presently under construction at Copper Cliff, Ontario, which will have an annual productive capacity of some 125 million pounds of nickel pellets and powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References—Part I

  1. Okunev, A. I., Kusakin, P. S., Vatolin, N. A., Kolmogorov, B. A., and Zamorin, L. N., “Direct Production of Metallic Nickel from the Liquid Intermediate Sulphide Product of Matte Converting”, Tr. Inst. Met., Akad. Nauk SSSR, Ural’sk. Filial, 1963, No. 8, pp. 75–82.

  2. Vaisburd, S. E., “Blowing of Nickel Bessemer Matte to Produce Metallic Nickel”, Tr. Proektn. i Nauchn.—Issled, Inst. Gipronikel, 1963, No. 16, pp. 119–124.

  3. Kohlmeyer, E. J., Gerlach, J., Hondelmann, D., Kleist, H. G., and Pawlek, F., “A Contribution to the Preparation of Metallic Nickel by the Blowing of Nickel Sulfide”, Metallwissenschaft und Technik, Vol. 22, 1968, No. 5, pp. 400–404.

    Google Scholar 

  4. Baren, M. R., “The Solubility of Sulfur in Liquid Alloys of Iron, Nickel and Cobalt”, Ph. D. Dissertation, University of Pennsylvania, 1966.

    Google Scholar 

  5. Data on oxygen activity in liquid nickel from many sources were correlated with data on the NiO liquidus. The results were close to those measured directly by: Fischer, W. A. and Ackermann, W., “Direct Electrochemical Determination of the Oxygen Content of Molten Metals, Part I”, Archiv fur das Eisenhuttenwesen, Vol. 37, 1966, No. 1, pp. 43–47.

    Article  Google Scholar 

  6. Fischer, W. A. and Ackermann, W., “Influence of Sulfur on the Activity of Oxygen in Molten Iron, Cobalt, and Nickel at 1600°C”, Archiv fur das Eisenhuttenwesen, Vol. 37, 1966, No. 10, pp. 779–781.

    Article  Google Scholar 

  7. Queneau, P. E. and Renzoni, L. S., U.S. Patent 3,069,254, 1962.

  8. Schnabel, C., Handb. d. Metallhuttenk., Vol. II, Berlin, 1904, p. 650.

    Google Scholar 

  9. Hesse, R., “Experiments on the Blowing of Nickel Matte to Nickel by Means of an Oxygen-Enriched Blast”, Metallurgie, 1906, pp. 287–292 and pp. 375–381.

  10. Lellep, O., U.S. Patents 1,278,176, 1918 and 1,599,424, 1926.

  11. Newton, J., Extractive Metallurgy; New York, N.Y., John Wiley and Sons, 1959, p. 351.

    Google Scholar 

  12. Schlecht, L., and Schubardt, W., “Nickel”, Ullman’s Encyclopedia Technische Chemie, Vol. 12, 1960, p. 709.

    Google Scholar 

  13. Tseidler, A. A., “Metallurgy of Copper and Nickel”, Jerusalem, Israel Program for Scientific Translations, 1964, pp. 229–230.

  14. Boldt, J. R., Jr., and Queneau, P., The Winning of Nickel, Princeton, N. J., D. Van Nostrand, 1967, p. 283.

    Google Scholar 

  15. Saddington, R., Curlook, W., and Queneau, P., “Tonnage Oxygen for Nickel and Copper Smelting at Copper Cliff,” Journal of Metals, Vol. 18, 1966, No. 4, pp. 449–451.

    Google Scholar 

  16. Patent pending.

  17. Inco Staff, “The Operations and Plants of the International Nickel Company of Canada Limited, Canadian Mining Journal, Vol. 67, 1946, No. 5, p. 439.

    Google Scholar 

  18. Patent pending.

  19. Patent pending.

  20. Op. cit., ref. 14, pp. 362–368.

  21. Op. cit., ref. 14, p. 368.

  22. Curlook, W., O’Neill, C. E., and Queneau, P., British Patent 1,067,638, 1967.

References—Part I

  1. The Mineral Industry, Annual, Eng. & Min. Jnl., New York, Vol. XI, 1902, p. 492.

  2. Mond, L., Langer, C. and Quincke, F., “Action of Carbon Monoxide on Nickel”, J. Chem. Soc., Vol. 57, pp. 749–53 (1890), Proc. Chem. Soc., Vol. 86, pp. 112–13 (1890).

    Article  Google Scholar 

  3. Emeleus, H. J. and Anderson, J. S., Modern Aspects of Inorganic Chemistry, 3rd Ed., Princeton, N. J., D. Van Nostrand, 1960, Chapter VIII, p. 254.

    Google Scholar 

  4. Calderazzo, F., Ercoli, R. and Natta, G., “Metal Carbonyls: Preparation, Structure and Properties”, Organic Synthesis via Metal Carbonyls, Vol. 1, Wender, I. and Pino, P., Editors, Interscience (Wiley), 1968, pp. 1–272.

    Google Scholar 

  5. Remy, H., Treatise on Inorganic Chemistry, Vol. II, Amsterdam, Elsevier Publ. Co., 1956, p. 351 et seq.

    Google Scholar 

  6. Sazegar, P. J., Bibliography on Nickel Carbonyl, Part 1, Preparation and Properties, International Nickel Inc., New York, ICB-25 (1), Revision, 1961, 103 pp.

    Google Scholar 

  7. Op. cit. Ref. 4, p. 28 et seq.

    Google Scholar 

  8. Op. cit. Ref. 6, Section A.

    Google Scholar 

  9. Wender, I., Sternberg, H. W., et al., The Chemistry and Catalytic Properties of Cobalt and Iron Carbonyls, U.S. Bureau of Mines, Bull. 600, 83 pp., 1962.

  10. Lewis, R. M., Cookston, J. W., Coffer, L. W. and Stephens, F. M., “Iron and Nickel by Carbonyl Treatment”, Journal of Metals, Vol. 10, 419–24 (1958).

    Google Scholar 

  11. Mittasch, A., “The Chemical Dynamics of Nickel Carbonyl”, Z. physik. Chem. 40, p. 72 (1902): J. Chem. Soc. 82, Vol. II, pp. 307–8 (1902).

    Google Scholar 

  12. Grieb, C. M. W. (to The Mond Nickel Company Ltd.), British Patent 347,208, Jan. 16, 1930: also U.S. Patent 1,909,762, May 16, 1933.

  13. Op. cit. Ref. 11, p. 70.

    Google Scholar 

  14. Op. cit. Ref. 3, p. 257.

    Google Scholar 

  15. O’Neill, C. E., “The Role of Nickel-Carbon Monoxide Surface Complexes in the Formation of Nickel Carbonyl”, Ph.D. Thesis, Columbia University, New York, 1961.

    Google Scholar 

  16. Frysinger, G. R. and Beutner, H. P., Canadian Patent 747,290, 1966.

  17. International Nickel Company (Mond) Ltd., London, “30 Years’ Progress in Nickel Refining”, 7 pp., 1963, (Revision of “25 Years’ Progress in Nickel Refining”, Industrial Chemist, 1959, Dec, pp. 583–588).

  18. Boldt, J. R. Jr. and Queneau, P., The Winning of Nickel, Princeton, N.J., D. Van Nostrand, 1967, p. 380.

    Google Scholar 

  19. Op. cit. Ref. 18, pp. 380–383.

    Google Scholar 

  20. B.I.O.S. Final Report No. 1575, Item 21, London, H. M. Stationery Office, 35 pp., 1947.

  21. Op. cit. Ref. 19.

    Google Scholar 

  22. Queneau, P. E., Townshend, S. C. and Young, R. S., Canadian Patents 604,997, 610,100, and U.S. Patent 2,944,883, 1960.

  23. Curlook, W., O’Neill, C. E., and Queneau, P. E., British Patent 1,067,638, 1967.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queneau, P., O’Neill, C.E., Illis, A. et al. Some Novel Aspects of the Pyrometallurgy and Vapometallurgy of Nickel. JOM 21, 35–45 (1969). https://doi.org/10.1007/BF03378898

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03378898

Navigation