Skip to main content
Log in

Algebraic Systems With Lipschitz Perturbations

  • Original Paper
  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

By using variational methods, the existence of infinitely many solutions for a nonlinear algebraic system with a parameter is established in presence of a perturbed Lipschitz term. Our goal was achieved requiring an appropriate behavior of the nonlinear term f, either at zero or at infinity, without symmetry conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Agarwal, Difference Equations and Inequalities: theory, methods and applications, Marcel Dekker, New York-Basel, 2000.

    MATH  Google Scholar 

  2. C. Bereanu and J. Mawhin, Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions, Math. Bohem. 131, (2006), 145–160.

    MathSciNet  MATH  Google Scholar 

  3. X. Cai and J. Yu, Existence theorems of periodic solutions for second-order nonlinear difference equations, Adv. Difference Equ. 2008, (2008) Article ID 247071.

  4. S.S. Cheng, Partial difference equations, Taylor & Francis, London, (2003).

    Book  MATH  Google Scholar 

  5. M. Galewski and A. Orpel, On the existence of solutions for discrete elliptic boundary value problems, Appl. Anal. 89, (2010), 1879–1891.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Galewski and J. Smejda, On variational methods for nonlinear difference equations, J. Comput. Appl. Math. 233: 11, (2010), 2985–2993.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. He and Y. Su, On discrete fourth-order boundary value problems with three parameters, J. Comput. Appl. Math. 233, (2010), 2506–2520.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Henderson and H.B. Thompson, Existence of multiple solutions for second order discrete boundary value problems, Comput. Math. Appl. 43, (2002), 1239–1248.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Ji and B. Yang, Eigenvalue comparisons for boundary value problems of the discrete elliptic equation, Commun. Appl. Anal. 12 (2), (2008), 189–197.

    MathSciNet  MATH  Google Scholar 

  10. W. G. Kelly and A. C. Peterson, Difference Equations, An introduction with applications, Academic Press, San Diego-NewYork, 1991.

    Google Scholar 

  11. A. Kristály, V. Rădulescu and Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, No. 136, Cambridge University Press, Cambridge, 2010.

    Book  MATH  Google Scholar 

  12. A. Kristály, M. Mihăilescu, V. Rădulescu and S. Tersian, Spectral estimates for a nonhomogeneous difference problem, Commun. Contemp. Math. 12, (2010), n. 6, 1015–1029.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Kristály, M. Mihăilescu and V. Rădulescu, Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions, J. Difference Equ. Appl. 17, (2011), 1431–1440.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Marcu and G. Molica Bisci, Existence and multiplicity results for nonlinear discrete inclusions, Electron. J. Differential Equations, 2012, 1–13.

    Google Scholar 

  15. M. Mihăilescu, V. Rădulescu and S. Tersian, Eigenvalue Problems for Anisotropic Discrete Boundary Value Problems, J. Difference Equ. Appl. 15, (2009), 557–567.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Molica Bisci and D. Repovš, On some variational algebraic problems, Adv. Nonlinear Analysis 2, (2013), 127–146.

    MathSciNet  MATH  Google Scholar 

  17. G. Molica Bisci and D. Repovš, Nonlinear Algebraic Systems with discontinuous terms, J. Math. Anal. Appl. 398, (2013), 846–856.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Molica Bisci and D. Repovš, On sequences of solutions for discrete anisotropic equations, Expo. Math. 32, (2014), no. 3, 284–295.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Molica Bisci and D. Repovš, Existence of solutions for p-Laplacian discrete equations, Appl. Math. Comput. 242, (2014), 454–461.

    MathSciNet  MATH  Google Scholar 

  20. D. Motreanu and V. Rădulescu, Variational and non-variational methods in nonlinear analysis and boundary value problems, Nonconvex Optimization and its Applications, 67, Kluwer Academic Publishers, Dordrecht, 2003.

    Google Scholar 

  21. B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 133, (2000), 401–410.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Stehlík, On variational methods for periodic discrete problems, J. Difference Equ. Appl. 14 (3), (2008), 259–273.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Yang and J. Zhang, Existence results for a nonlinear system with a parameter, J. Math. Anal. Appl. 340, (2008), n. 1, 658–668.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Yang and J. Zhang, Existence and multiple solutions for a nonlinear system with a parameter, Nonlinear Anal. 70, (2009), n. 7, 2542–2548.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Zhang, Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear Anal. 66 (6), (2007), 1410–1416.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Zhang and L. Bai, Existence of solutions for a nonlinear algebraic system, Discrete Dyn. Nat. Soc., (2009), 1–28.

    Google Scholar 

  27. G. Zhang and S.S. Cheng, Existence of solutions for a nonlinear algebraic system with a parameter, J. Math. Anal. Appl. 314, (2006), 311–319.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Zhang and W. Feng, On the number of positive solutions of a nonlinear algebraic system, Linear Algebra Appl. 422, (2007), 404–421.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Molica Bisci.

Additional information

The manuscript was realized within the auspices of the INdAM — GNAMPA Project 2014 titled: Proprietà geometriche ed analitiche per problemi non-locali and the SRA grants P1-0292-0101 and J1-5435-0101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisci, G.M., Repovš, D. Algebraic Systems With Lipschitz Perturbations. J Elliptic Parabol Equ 1, 189–199 (2015). https://doi.org/10.1007/BF03377375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03377375

2010 Mathematics Subject Classication

Key words and phrases

Navigation