Skip to main content
Log in

Effects of selected insecticides on osmotically treated entomopathogenic nematodes

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Combining environmentally friendly insecticides with entomopathogenic nematodes may constitute an effective alternative to conventional chemical control of many insect pests. The objective of this laboratory study was to evaluate the effects of selected insecticides which are commonly used for pest control in vegetables in China on osmotically treated and untreated infective juveniles of Steinernema carpocapsae strain All. The insecticides azadirachtin, chlorpyrifos, cypermethrin, fipronil, imidacloprid, malathion, thiamethoxam and chlorantraniliprole-thiamethoxam had no adverse effects on nematode survival and infectivity. In contrast, bisultap, emamectin benzoate, phoxim and rotenone proved harmful to S. carpocapsae All mainly by reducing infectivity of the infective juveniles to larvae of the greater wax moth, Galleria mellonella. Osmotic induction is a promising way to induce entomopathogenic nematodes into partial anhydro-biosis and thus increase environmental stress tolerance of the nematodes as well as their shelf life after production. The present results showed that osmotic treatment did not adversely affect fitness of the nematode in terms of its susceptibility to insecticides and even increased its tolerance to chlorpyrifos and rotenone. The results of this laboratory study indicate that several of the tested insecticides can be safely combined with S. carpocapsae All within an integrated pest management approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott WS, 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18, 265–267.

    Article  CAS  Google Scholar 

  • Alumai A & Grewal PS, 2004. Tank-mix compatibility of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, with selected chemical pesticides used in turf grass. Biocontrol Sci Technol 14, 725–730.

    Article  Google Scholar 

  • Barrett J, 1991. Anhydrobiotic nematodes. Agr Zool Rev 4, 161–175.

    Google Scholar 

  • Bedding RA, 1981. Low cost in vitro mass production of Neoaplectana and Heterorhabditis species (Nematoda) for field control of insect pests. Nematologica 27, 109–114.

    Article  Google Scholar 

  • Feng HT, Huang YJ & Hsu JC, 2000. Insecticide susceptibility of cabbage flea beetle (Phyllotreta striolata (Fab.)) in Taiwan. Plant Prot Bull Taipei 42, 123–146.

    Google Scholar 

  • Feng SP, Han RC, Qiu XH, Cao L, Chen JH & Wang GH, 2006. Storage of osmotically treated entomopathogenic nematode Steinernema carpocapsae. Insect Sci 13, 263–269.

    Article  Google Scholar 

  • Fetoh BES, Khaled AS & El-Nagar TFK, 2009. Combined effect of entomopathogenic nematodes and biopesticides to control the greasy cut worm, Agrotis ipsilon (Hufn.) in the strawberry fields. Egypt Acad J Biol Sci 2 (1), 227–236.

    Google Scholar 

  • García del Pino F & Jové M, 2005. Compatibility of entomopathogenic nematodes with fipronil. J Helminthol 79, 333–337.

    Article  PubMed  Google Scholar 

  • Grewal PS, 2000. Enhanced ambient storage stability of an entomopathogenic nematode through anhydrobiosis. Pest Manag Sci 56, 401–406.

    Article  CAS  Google Scholar 

  • Grewal PS, Wang X & Taylor RAJ, 2002. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? Int J Parasitol 32, 717–725.

    Article  CAS  PubMed  Google Scholar 

  • Grewal PS, Ehlers RU & Shapiro-Ilan DI, 2005. Nematodes as Biocontrol Agents. CABI, New York, NY.

    Book  Google Scholar 

  • Han RC, 1995. Optimum management of mass production system of entomopathogenic Steinernema and Heterorhabditis nematodes. PhD Thesis, South China Agricultural University Press, Guangzhou, P.R. China.

    Google Scholar 

  • Hara AH & Kaya HK, 1983. Toxicity of selected organophosphate and carbamate pesticides to infective juveniles of the entomogenous nematode Neoaplectana carpocapsae (Rhabditida: Steinernematidae). Environ Entomol 12, 496–501.

    Article  Google Scholar 

  • Kaya HK, Alunmai A, Choo HY, De La Torre M, Fodor A, Ganguly S, Hazir S, Lakatos T, Pye A, Wilson M, Yamanaka S, Yang H & Ehlers RU, 2006. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biol Control 38, 134–155.

    Article  Google Scholar 

  • Koppenhöfer AM & Grewal PS, 2005. Compatibility and interactions with agrochemicals and other biocontrol agents. In: Grewal PS, Ehlers R & Shapiro-Ilan DI (Eds.) 2005. Nematodes as Biocontrol Agents. CABI Publishing, Wallingford, Oxfordshire, UK. 363–381.

    Chapter  Google Scholar 

  • Koppenhöfer AM, Cowles RS, Cowles EA, Fuzy EM & Baumgartner L, 2003. Effect of neonicotinoid insecticide synergists on entomopathogenic nematode fitness. Entomol Exp Appl 106, 7–18.

    Article  Google Scholar 

  • Ling N, 2003. Rotenone — a review of its toxicity and use for fisheries management. Wellington (New Zealand): Department of Conservation. Science for Conversation No. 211.

    Google Scholar 

  • Negrisoli Jr AS, Garcia MS & Negrisoli CRCB, 2010. Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1979) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Prot 29, 545–549.

    Article  Google Scholar 

  • Prakasa Rao PS, Das PK & Pandhi G, 1975. Note of compatibility of DD-136 (Neoaplectana dutkyi), an insect parasitic nematode with some insecticides and fertilizers. Indian J Agr Sci (publ. 1977) 45, 275–277.

    Google Scholar 

  • Robertson DR & Smith-Vaniz WF, 2008. Rotenone: An essential but demonized tool for assessing marine fish diversity. Bioscience 58, 165–170.

    Article  Google Scholar 

  • Rovesti L, Heinzpeter EW, Tagliente F & Deseö KV, 1988. Compatibility of pesticides with the entomopathogenic nematodes Heterorhabditis bacteriophora Poinar (Nematoda: Heterorhabditidae). Nematology 34, 462–476.

    Article  CAS  Google Scholar 

  • Singer TP & Ramsay RR, 1994. The reaction site of rotenone and ubiquinone with mitochondrial NADH dehydrogenase. Biochim Biophys Acta 1187, 198–202.

    Article  CAS  PubMed  Google Scholar 

  • Vanhaecke M & Degheele D, 1980. Electrophoretic characterization of the haemolymph proteins, glyco- and lipoproteins of Galleria mellonella, Plodia interpunctella and Ephestia kuehniella. Meded Fac Landbouww Rijksuniv Gent 45, 1287–1297.

    CAS  Google Scholar 

  • Waddy S, Merritt V, Hamilton-Gibson M, Aiken D & Burridge L, 2007. Relationship between dose of emamectin benzoate and molting response of ovigerous American lobsters (Homarus americanus). Ecotoxicol Environ Saf 67, 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Wang G & Han R, 2008. Biological control of striped flea beetle, Phyllotreta striolata Fabricius. Chinese J Biol Control 24 (1), 91–93.

    Google Scholar 

  • Wang X, Zhao Y, Feng Y, Chen H, Lin Y & Han Q, 1995. Analysis of blood, stomach and liver samples from Shachongshuang intoxicated persons. J Hyg Res 24, 346–349.

    Google Scholar 

  • Yan X & Han RC, 2010. Anhydrobiosis of entomopathogenic nematodes. Chinese J Biol Control 26, 90–95.

    Google Scholar 

  • Yan X, Liu X, Han R, Chen S, De Clercq P & Moens M, 2010. Osmotic induction of anhydrobiosis in entomopathogenic nematodes of the genera Heterorhabditis and Steinernema. Biol Control 53, 325–330.

    Article  Google Scholar 

  • Yan X, De Clercq P, Han R, Jones J, Chen S & Moens M, 2011. Osmotic responses of different strains of Steinernema carpocapsae. Nematology 13, 845–851.

    Article  Google Scholar 

  • Zhang ZR, Cao L, Liu XL, Wang GH, Xu ZF & Han RC, 2006. Screening of insecticides as synergists for entomopathogenic nematodes Steinernema longicaudum X-7. Chinese Bull Entomol 43 (1), 68–73.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick De Clercq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Moens, M., Han, R. et al. Effects of selected insecticides on osmotically treated entomopathogenic nematodes. J Plant Dis Prot 119, 152–158 (2012). https://doi.org/10.1007/BF03356434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356434

Key words

Navigation