Skip to main content
Log in

Fungal resistance of Triticum durumT. monococcum ssp. aegilopoides amphiploid

Pilzresistenz eines amphiploiden Bastards aus Triticum durum und T. monococcum ssp. aegilopoides

  • Short Communication
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

A Triticum durumT. monococcum amphiploid (AABBAmAm) was synthesized by chromosome doubling of sterile triploid hybrids obtained between the two T. durum cultivars Saturn-1 and Neptun-2, and one T. monococcum ssp. aegilopoides (AmAm) accession. The two amphiploid lines, A1 and A2 with each durum cultivar, expressed resistance to wheat powdery mildew at seedling and adult stage, and to four leaf rust cultures, including isolate 22762 to which the diploid wild wheat was susceptible. The newly produced amphiploid could be a useful genetic resource for fungal resistance in wheat.

Zusammenfassung

Ein amphiploider Bastard aus Triticum durum und T. monococcum (AABBAmAm) wurde durch Chromosomenverdoppelung steriler triploider Hybriden aus den beiden T.-durum-Sorten Saturn-1 und Neptun-2 und der Akzession T. monococcum ssp. aegilopoides AmAm gewonnen. Die beiden amphiploiden Linien A1 und A2 waren gegen Getreidemehltau resistent, genauso wie gegen vier Kulturen von Getreideblattrosten, u.a. dem Isolat 22762, gegenüber dem der Wildweizen anfällig war. Der neue amphiploide Bastard könnte als genetische Ressource für Pilzresistenzen im Weizen dienen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • An, X., Q. Zhang, Y. Yan, Q. Li, Y. Zhang, A. Wang, Y. Pei, J. Tian, H. Wang, S.L.K. Hsam, F.J. Zeller, 2006: Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor. Appl. Genet. 113, 383–395.

  • Bartoš, P., V. Šip, A. Hanzalová, L. Ku Era, J. Ovesná, J. Valkoun, J. Chrpová, R. Hanušová, V. Dumalosová, E. Stuchliková, K. Zadrazil, 2005: Utilization of wild relatives and primitive forms of wheat in Czech wheat breeding. Czech J. Genet. Plant Breed. 41, 284–287.

  • Cakmak, I., O. Cakmak, S. Eker, A. Ozdemir, N. Watanabe, H.J. Braun, 1999: Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats. Plant Soil 215, 203–209.

  • Dvorak, J., 1988: Cytogenetical and molecular inferences about the evolution of wheat. In: T.E. Miller, R.M.D. Koebner (eds.): Proceedings, Seventh International Wheat Genetic Symposium, Cambridge, United Kingdom, 13–19 July 1988, 187–192.

    Google Scholar 

  • Gill, R.S., H.S. Dhaliwal, D.S. Multani, 1988: Synthesis and evaluation of Triticum durum — T. monococcum amphiploids. Theor. Appl. Genet. 75, 912–916.

  • Goncharov, N.P., S.V. Bannikova, T. Kawahara, 2007: Wheat artificial amphiploids involving the Triticum timopheevii genome: their studies, preservation and reproduction. Genet. Resour. Crop Ev. 54, 1507–1516.

  • He, D., L. Hongjie, X. Shichang, D. Xiayu, Z. Yilin, L. Lihiu, 2007: Reaction to powdery mildew and stripe rust in related species and landraces of wheat. Genet. Resour. Crop Ev. 54, 213–219.

  • Hussien, T., R.L. Bowden, B.S. Gill, T.S. Cox, 1998: Chromosomal locations in common wheat of three new leaf rust resistance genes from Triticum monococcum. Euphytica 101, 127–131.

  • Knott, D.R., 1989: The wheat rusts-breeding for resistance. Springer-Verlag, Berlin.

  • Lamb, R.J., S.M. Migui, R.J. Lamb, 2003: Patterns of resistance to three cereal aphids among wheats in the genus Triticum. B. Entomol. Res. 93, 323–333.

  • Ma, H., R.P. Singh, A. Mujeeb-Kazi, 1997: Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica 94, 279–286.

  • McIntosh, R.A., P.L. Dyck, T.T. The, J.E. Cusick, D.L. Milne, 1984: Cytogenetical studies in wheat. XIII. Sr35 — a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Z. Pflanzenzucht. 92, 1–14

  • Multani, D.S., H.S. Dhaliwal, P. Singh, K.S. Gill, 1988: Synthetic amphiploids of wheat as a source of resistance to Karnal bunt (Neovossia indica). Plant Breed. 101, 122–125.

  • Paull, J.G., M.A. Pallotta, P. Langridge, T.T. The, 1994: RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid Triticum boeoticum. Theor. Appl. Genet. 89, 1039–1045.

  • Rogers, W.J., T.E. Miller, P.I. Payne, J.A. Seekings, E.J. Sayers, L.M. Holt, C.N. Law, 1997: Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss. ssp. thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica 93, 19–29.

  • Ruiz, M., E. Aguirano, R. Fité, J.M. Carrillo, 2007: Combined use of gliadins and SSRs to analyse the genetic variability of the Spanish collection of cultivated diploid wheat (Triticum monococcum L. ssp. monococcum). Genet. Resour. Crop Ev. 54, 1849–1860.

  • Shi, A.N., S. Leath, J.P. Murphy, 1998: A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88, 144–147.

  • Sodkiewicz, W., 2002: diploid wheat-triticum monococcum as a source of resistance genes to preharvest sprouting of triticale. cereal res. commun. 30, 323–328

  • Sodkiewicz, W., A. Strzembicka, 2004: Application of Triticum monococcum for the improvement of triticale resistance to leaf rust (Puccinia triticina). Plant Breed. 123, 39–42.

  • Spetsov, P., M. Savov, 1992: A review on amphiploids in the Triticeae, obtained in Bulgaria during 1950–1990. Wheat Inf. Serv. 75, 1–6.

  • Spetsov, P., D. Plamenov, V. Kiryakova, 2006: Distribution and characterization of Aegilops and Triticum species from the Bulgarian Black Sea coast. Cent. Eur. J. Biol. 1, 399–411.

  • Stakman, E.C., D.M. Stewart, W.Q. Loegering, 1962: Identification of physiologic races of Puccinia graminis var. tritici. Agric. Res. Ser. E617. US Department of Agriculture, Washington, DC, USA.

  • Stoilova, T., P. Spetsov, 2006: Chromosome 6U from Aegilops geniculata Roth carrying powdery mildew resistance in bread wheat. Breed. Sci. 56, 351–357.

  • Tsvetkov, K.S., S.M. Tsvetkov, I. Petrova, I. Vassileva, L. Belcheva, I. Iliev, 2003a: Neptun 2-New productive winter durum wheat for high pasta quality manifacture in Bulgaria. Bulg. J. Agr. Sci. 9, 509–514.

  • Tsvetkov, S.M., K.S. Tsvetkov, I. Petrova, I. Vassileva, L. Belcheva, I. Iliev, 2003b: Saturn 1-A new durum wheat variety in Bulgaria. Bulg. J. Agr. Sci. 9, 499–504.

  • Van Slageren, M.W., 1994: Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers 9420-. Wageningen, The Netherlands, 1–513.

  • Yao, G., J. Zhang, L. Yang, H. Xu, Y. Jiang, L. Xiong, C. Zhang, Z. Zhang, Z. Ma, M.E. Sorrells, 2007: Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor. Appl. Genet. 114, 351–358.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Plamenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plamenov, D., Belchev, I., Kiryakova, V. et al. Fungal resistance of Triticum durumT. monococcum ssp. aegilopoides amphiploid. J Plant Dis Prot 116, 60–62 (2009). https://doi.org/10.1007/BF03356287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356287

Key words

Stichwörter

Navigation