Skip to main content
Log in

Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize Mon810

Quantitative Analyse der saisonalen und gewebespezifischen Expression von Cry1Ab in transgenen Mon810-Mais

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The tissue-specific expression and seasonal abundance of Cry1Ab protein were determined in transgenic maize plants (Mon810, variety ‘Novelis’) from two field trials located near Bonn and Halle, Germany. A total of 1085 samples were analysed by using Double Antiserum-Enzyme Linked Immun-osorbent Assay (DAS-ELISA). The Cry1Ab contents of various plant tissues (root, stem, upper leaf, lower leaf, anther, pollen and kernel) were determined at four different growth stages (BBCH19, BBCH30, BBCH61 and BBCH83) collected in 2001, 2002 and 2003. Mon810 showed the highest Cry1Ab contents in the leaves (5.5–6.4 µg g–1 fresh weight [fw]) at BBCH83, whereas the lowest Cry1Ab contents were detected in the pollen (1–97 ng g–1 fw). Cry1Ab content of residual root stocks collected in the field nine months after harvest was 15–17 n g g–1 fw. This demonstrated that the Cry1Ab concentration in residual root stocks was reduced to about one-hundredth of the fresh roots. The monitoring of Cry1Ab expression showed that the Cry1Ab contents varied strongly between different plant individuals.

Zusammenfassung

p ]Die gewebespezifische Expression und die saisonale Verbreitung des Cry1Ab-Proteins in transgenen Maispflanzen (Mon810, Sorte „Novelis“) wurde in zwei Feldversuchen bei Bonn und Halle untersucht. Insgesamt wurden 1085 Proben mit Hilfe des Double Antiserum-Enzyme Linked Immunosor-bent Assay (DAS-ELISA) untersucht. Der Cry1Ab-Gehalt verschiedener Pflanzengewebe (Wurzel, Stängel, oberes Blatt, unteres Blatt, Staubbeutel, Pollen und Korn) wurde in vier verschiedenen Entwicklungsstadien (BBCH19, BBCH30, BBCH61 and BBCH83) in den Jahren 2001, 2002 und 2003 bestimmt. Die Blätter von Mon810 zeigten den höchsten Cry1Ab-Gehalt (5.5–6.4 µg g–1 Frischgewicht [FG] bei BBCH83), während die Pollen mit 1–97 ng g–1 FG den geringsten Gehalt aufwiesen. Der Cry1Ab-Gehalt auf dem Feld verbliebener Wurzeln betrug neun Monate nach der Ernte 15–17 ng g–1 FG, also nur etwa ein Hundertstel des Gehalts frischer Maiswurzeln. Die Expression des Cry1Ab-Prote-ins variierte gravierend zwischen einzelnen Maispflanzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • AGBIOS, 2001: http://www.agbios.com

  • Alstad, D.N., D.A. Andow, 1995: Managing the evolution of insect resistance to transgenic to transgenic plants. Science 268, 1394–1396.

    Article  Google Scholar 

  • Baumgarte, S., C.C. Tebbe, 2005: Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (Mon810) and its effect on bacterial communities in the maize rhizosphere. Mol. Ecol. 14, 2539–2551.

    Article  CAS  PubMed  Google Scholar 

  • Clark, B.W., T.A. Phillips, J.R. Coats, 2005: Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from trans-genic crops: a review. J. Agric. Food Chem. 53, 4643–4653.

    Article  CAS  PubMed  Google Scholar 

  • Dutton, A., J. Romeis, F. Bigler, 2003: Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study. Biocontrol 48, 611–636.

    Article  CAS  Google Scholar 

  • EPA, 1999: Biopesticide fact sheet: Bacillus thuringiensis Cry1A(b) delta-endotoxin and the genetic material necessary for its production in corn. Office of Pesticide Programs, US Environmental Protection Agency. (http://www.epa.gov/pesticides/facsheets/fs006430t.htm).

    Google Scholar 

  • EPA BRAD, 2001: Biopesticides registration action document: Revised risks and benefits sections- Bacillus thuringiensis plant-pesticides. July 16. 2001, EPA. p. IIA5; IIC17.

    Google Scholar 

  • Essential Biosafety, 2001: http://www.essentialbiosafety.info

  • Gould, F., 1998: Sustainability of transgenic insecticidal culti-vars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726.

    Article  CAS  PubMed  Google Scholar 

  • Greenplate, J.T., 1999: Quantification of Bacillus thuringiensis insect control protein Cry1Ac over time in Bollgard cotton fruit and terminals. J. Econ. Entomol. 92, 1377–1383.

    Article  CAS  Google Scholar 

  • Hellmich, R.L., B.D. Siegfried, M.K. Sears, D.E. Stanley-Horn, M.J. Daniels, H.R. Mattila, T. Spencer, K.G. Bidne, L.C. Lewis, 2001: Monarch larvae sensitivity to Bacillus thuringiensis purified proteins and pollen. Proc. Natl. Acad. Sci. USA 98, 11925–11930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser, H., 1965: Zum Problem der Nachweisgrenze. Fresenius Z. Anal. Chem. 209, 1–18.

    Article  CAS  Google Scholar 

  • Koziel, M.G., G.L. Beland, C. Bowman, N.B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desal, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPheson, M.R. Meghji, E. Merlin, R. Rhodes, G.W. Warren, M. Wringt, S.T. Evola, 1993: Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11, 194–200.

    Article  CAS  Google Scholar 

  • Krattiger, A.F., 1996: Insect Resistance in crops: A case study of Bacillus thuringiensis (Bt) and its transfer to developing countries. ISAAA Briefs No. 2, pp. 3–4. ISAAA, Ithaca, NY, USA.

    Google Scholar 

  • Meier, U., 2001: Growth stages of mono- and dicotyledonous plants. Second edition. Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, Germany.

    Google Scholar 

  • Mendelsohn, M., J. Kough, Z. Vaituzis, K. Matthews, 2003: Are Bt crops safe? Nature Biotechnol. 21, 1003–1009.

    Article  CAS  Google Scholar 

  • Pagel-Wieder, S., F. Gessler, J. Niemeyer, D. Schröder, 2004: Absorbtion of Bacillus thuringiensis (Cry1Ab) on Na-mont-morillonite and on the clay fractions of different soils. J. Plant Nutri. Soil Sci. 167, 184–188.

    Article  CAS  Google Scholar 

  • Perlak, F.J., R.L. Fuchs, D.A. Dean, S.L. McPheson, D.A. Fischhoff, 1991: Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 3324–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepho, H.P., A. Büchse, K. Emrich, 2003: Reiseführer der gemischten Modelle für randomisierte Experimente. J. Agron. Crop Sci. 189, 310–322.

    Article  Google Scholar 

  • Romeis, J., A. Dutton, F. Bigler, 2004: Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J. Insect Physiol. 50, 175–183.

    Article  CAS  PubMed  Google Scholar 

  • Shelton, A.M., J.-Z. Zhao, R.T. Roush, 2002: Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 47, 845–881.

    Article  CAS  PubMed  Google Scholar 

  • Spilke, J., A. Tuchscherer, 2001: Simulationsuntersuchungen zum Einfluss verschiedener Strategien der Varianzkomponentenschätzung und Hypothesenprüfung auf die statistischen Risiken in gemischten linearen Modellen mit ungleicher Klassenbesetzung. Z. Agrarinf. 10, 66–75.

    Google Scholar 

  • Spilke, J., H.P. Piepho, X. Hu, 2002: Auswertung unbalancierter Feldversuche bei Nutzung von SAS PROC MIXED. Mitt.Ges. Pflanzenbauwiss. 14, 66–67.

    Google Scholar 

  • Tapp, H., G. Stotzky, 1998: Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol. Biochem. 30, 471–476.

    Article  CAS  Google Scholar 

  • Transgen, 2005: Weltweiter Anbau von gv-Pflanzen 2005: (http://www.transgen.de/gentechnik/pflanzenanbau/531.doku.html).

    Google Scholar 

  • Whiteley, H.R., H.E. Schnepf, 1986: The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu. Rev. Microbiol. 40, 549–576.

    Article  CAS  PubMed  Google Scholar 

  • Zwahlen, C., A. Hilbeck, R. Howald, W. Nentwig, 2003: Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Mol. Ecol. 12, 1077–1086.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Jehle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T., Jehle, J.A. Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize Mon810. J Plant Dis Prot 114, 82–87 (2007). https://doi.org/10.1007/BF03356208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356208

Key words

Stichwörter

Navigation