Skip to main content
Log in

Three-month treatment with metformin or dexfenfluramine does not modify the effects of diet on anthropometric and endocrine-metabolic parameters in abdominal obesity

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Abdominal obesity is connoted by hyperinsulinism and insulin insensitivity, a trend toward glucose intolerance, hypoactivity of GH/IGF-I axis and alterations of hypothalamo-pituitary-adrenal (HPA) axis. It has been hypothesized that treatment with metformin (MET) and dexfenfluramine (DEX) could counteract those endocrine- metabolic alterations. Thus, we studied the effects of 3-month treatment with MET or DEX on anthropometric (BMI, WHR, FM and FFM), metabolic (basal and OGTT-induced glucose) and hormonal variables (IGF-I, DHEA-S, androstendione, testosterone, fT3, fT4, TSH, basal and OGTT-induced insulin) as well as on blood pressure in 28 normotensive patients with abdominal obesity (OB, 3 M, 25 F; 47.5±1.5 yr [mean±SE], BMI 35.4±1.1 kg/m2, WHR 0.98±0.04 and 0.86±0.07, in M and F, respectively). All patients were on balanced hypocaloric diet (1400 Kcal/day). Patients were randomly assigned to treatment with MET (no.=10, 500 mg twice daily po) or DEX (no.=10, 15 mg thrice daily po) or placebo (no.=8). Before treatment all groups had similar anthropometric, metabolic and hormonal values. After 3-month treatment with MET, DEX or placebo, weight, BMI and WHR reductions were similar in all groups (p<0.05 vs baseline in either group). In each group FFM/FM ratio showed non significant trend toward increase. No significant variations in metabolic and endocrine variables were recorded in each group after 1 and 3-month treatment. However, glucose tolerance, OGTT-induced insulin response, glucose/ insulin ratio showed a similar trend toward improvement in all groups, while IGF-I, 24 h urinary cortisol, DHEA-S, androstendione, testosterone, thyroid hormone and TSH levels did not show any variation. Significant (p<0.02) and similar reductions of DBP, but not of SBP, levels were found in all groups. In conclusion, our findings demonstrate that, at least after 3-month treatment, metformin and dexfenfluramine do not modify the effects of diet on anthropometric, metabolic and hormonal parameters as well as on blood pressure in patients with abdominal obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Institute of Health Consensus Development Panel on the health implications of obesity. Consensus Conference Statement. Ann. Int. Med. 103: 1073, 1985.

    Article  Google Scholar 

  2. Caro J.F. Insulin resistance in obese and nonobese man. J. Clin. Endocrinol. Metab. 73: 691, 1991.

    Article  CAS  PubMed  Google Scholar 

  3. De Fronzo R.A., Ferranini E. Insulin Resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14: 3, 1991.

    Google Scholar 

  4. Letiexhe M.R., Scheen A.J., Gérard P.L., Desaive C., Lefebvre P.J. Postgastroplasty recovery of ideal body weight normalizes glucose and insulin metabolism in obese women. J. Clin. Endocrinol. Metab. 80: 364, 1995.

    CAS  PubMed  Google Scholar 

  5. Guy-Grand B., Crepaldi G., Lefebvre P., Apfelbaum M., Gries A., Turner P. International trial of long-term dexfenfluramine in obesity. Lancet ii: 1142, 1989.

    Article  Google Scholar 

  6. Scheen A.J., Letiexhe M.R., Lefèbvre P.J. Effects of metformin in obese patients with impaired glucose tolerance. Diabetes Metab. Rev. 11: S70, 1995.

    Article  Google Scholar 

  7. Reaven G.M. Effect of metformin on various aspects of glucose, insulin and lipid metabolism in patients with non-insulin-dependent diabetes mellitus with varying degrees of hyperglycemia. Diabetes Metab. Rev. 11: 97, 1995.

    Article  Google Scholar 

  8. Blundell J.E. Serotonin and the biology of feeding. Am. J. Clin. Nutr. 55: 155S, 1992.

    CAS  PubMed  Google Scholar 

  9. Pijl H., Koppeschaar H.P.F., Willekens L.A., Frolich F., Meinders E. The influence of serotonergic neurotransmission on pituitary hormone release in obese and non-obese females. Acta Endocrinol. (Copenh.) 128: 319, 1993.

    CAS  Google Scholar 

  10. Muller E.E., Nisticò G. Brain messengers and the pituitary. Academic Press, New York, 1989, p. 98.

    Google Scholar 

  11. Lee A.J. Metformin in non insulin-dependent diabetes mellitus. Pharmacotherapy 16, 31: 327, 1996.

    CAS  Google Scholar 

  12. Bailey C.J. Biguanides and NIDDM. Diabetes Care 45: 755, 1992.

    Article  Google Scholar 

  13. De Fronzo R., Barzilai S., Simonson D.L. Mechanism of metformin action in obese and lean non insulin-dependent diabetic subjects. J. Clin. Endocrinol. Metab. 73: 1294, 1991.

    Article  Google Scholar 

  14. Bailey C.J. Metformin and intestinal glucose handling. Diabetes Metab. Rev. 11: S23, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Del Prato S., Marchetto S., Pipitone A., Zanon M., de Kreutzenberg S.V., Tiengo A. Metformin and free fatty acid metabolism. Diabetes Metab. Rev. 11: 533, 1995.

    Article  Google Scholar 

  16. Rouru J., Pesonen U., Koulu M., Huupponem R., Santti E., Virtanen K., Jhanwar-Uniyal M. Anorectic effect of metformin in obese zucher rats. Lack of evidence for the involment of neuropeptide Y. Eur. J. Pharm. 273: 99, 1995.

    Article  CAS  Google Scholar 

  17. Giugliano D., De Rosa N., Di Mario G., Marfella R., Acampera R., Buoninconti R., D’Onofrio F. Metformin improves glucose, lipid metabolism, and reduces blood pressure in hypertensive, obese women. Diabetes Care 16: 1378, 1993.

    Article  Google Scholar 

  18. Landin K., Teng Born L., Smith U. Treating insulin resistance in hypertension with metformin reduces both blood pressure and metabolic risk factors. J. Intern. Med. 229: 181, 1991.

    Article  CAS  PubMed  Google Scholar 

  19. Guy-Grand B. Clinical studies with d-fenfluramine. Am. J. Clin. Nutr. 55: 173S, 1992.

    CAS  PubMed  Google Scholar 

  20. Garattini S., Bizzi A., Codegoni A.M., Caccia S., Mennini T. Progress report on the anorexia induced by drugs believed to mimic some of the effects of serotonin on the central nervous system. Am. J. Clin. Nutr. 55: 160, 1992.

    Google Scholar 

  21. McCann U.D., Seiden L.S., Rubin L.J., Ricaurte G.A. Brain serotonin neurotoxicity and primary pulmonary hypertension from fenfluramine and dexfenfluramine. JAMA 278: 666, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Bremer J.M., Scott R.S., Lintott C. Dexfenfluramine reduces cardiovascular risk factors. Int. J. Ob. 18: 199, 1994.

    CAS  Google Scholar 

  23. Scheen A.J., Paolisso G., Salvatore T., Lefébvre P.J. Improvement of insulin-induced glucose disposal in obese patients with NIDDM after 1-wk treatment with d-fenfluramine. Diabetes Care 14: 325, 1991.

    Article  CAS  PubMed  Google Scholar 

  24. Verdy M., Charbonneau L., Verdy I., Belanger R., Bolte E., Chiasson J.L. Fenfluramine in the treatment of non-insulin-dependent diabetics: hypoglycemic versus anorectic effect. Int. J. Obes. 7: 289, 1983

    CAS  PubMed  Google Scholar 

  25. Bernini G.P., Argenio G.F., Vivaldi M.S., Del Corso C., Birindelli R., Luisi M., Franchi F. Impaired growth hormone response to insulin-induced hypoglycaemia in obese patients: restoration blocked by ritanserin after fenfluramine administration. Clin. Endocrinol. (Oxf.) 32: 453, 1990.

    Article  CAS  Google Scholar 

  26. Medeiros-Neto G., Lima N., Perozim L., Pedrinola F., Wajchenberg L. The effect of hypocaloric diet with and without dfenfluramine treatment on growth hormone release after growth hormone-releasing factor stimulation in patients with android obesity. Metabolism 43: 969, 1994.

    Article  CAS  PubMed  Google Scholar 

  27. Schurmeyer T.H., Brademann G., von zur Muhlen A. Effect of fenfluramine on episodic ACTH and cortisol secretion. Clin. Endocrinol. (Oxf.) 45: 39, 1996.

    Article  CAS  Google Scholar 

  28. Veldhuis J.D., Iranmanesh A., Ho K.K.Y., Waters M.J., Johnson M.L., Lizarralde G. Dual effects in pulsatile growth hormone secretion and clearance subserve the hyposomatotropism of obesity in man. J. Clin. Endocrinol. Metab. 72: 51, 1991.

    Article  CAS  PubMed  Google Scholar 

  29. Smith S.R. The endocrinology of obesity. Endocrinol. Metab. Clin. North Am. 25: 921, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. Pasquali R., Cantobelli S., Casimirri F., Capelli M., Bortoluzzi F., Flamia R., Morselli-Labate A.M., Barbara L. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J. Clin. Endocrinol. Metab. 77: 341, 1993.

    CAS  PubMed  Google Scholar 

  31. Crepaldi G., Belfiore F., Bosello O., Caviezel F., Contaldo F., Enzi G., Melchionda G. Consensus Conference Italiana: sovrappeso, obesità e salute. (CCI S.O.S ′91). Ann. Ital. Med. Int. 6: 349, 1991.

    Google Scholar 

  32. Nestler J.E., Beer N.A., Jakubowicz D.J., Beer R.M. Effects of a reduction in circulating insulin by metformin on serum dehydroepiandrosterone sulfate in nondiabetic men. J. Clin. Endocrinol. Metab. 78: 549, 1994.

    CAS  PubMed  Google Scholar 

  33. Fendri S., Debussche X., Puy H., Vincent O., Marcelli J.M., Debreuil A., Lalau J.D. Metformin effects on peripheral sensitivity to insulin in non diabetic obese subjects. Diabet. Metab. 19: 245, 1993.

    CAS  Google Scholar 

  34. Gudbjornsdottir S., Friberg P., Elam M., Atvall S., Lonnroth P., Wallin B.G. The effect of metformin and insulin on sympathetic nerve activity, norepinephrine spillover and blood pressure in obese, insulin resistant, normoglycemic, hypertensive men. Blood Pressure 3: 394, 1994.

    Article  CAS  PubMed  Google Scholar 

  35. Ditschueit H.H., Flechtner-Mors M., Dolderer M., Fulda U., Ditscuneit H. Endocrine and metabolic effects of dexfenfluramine in patients with android obesity. Horm. Metab. Res. 25: 573, 1993.

    Article  Google Scholar 

  36. Pestell R.G., Crock P.A., Ward G.M., Alford F.P., Best J.D. Fenfluramine increases insulin action in patients with NIDDM. Diabetes Care 12: 252, 1989.

    Article  CAS  PubMed  Google Scholar 

  37. Tchernof A., Despres J.P., Belanger A., Dupont A., Prud’Homme D., Moorjani S., Lupien P.J., Labrie F. Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism 44: 513, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. Copeland K.C., Colletti R.B., Devlin J.T., McAuliffe T.L. The relationship between insulin-like growth factor- I, adiposity, and aging. Metabolism 39: 584, 1990.

    Article  CAS  PubMed  Google Scholar 

  39. Phillips G.B. Relationship between serum sex hormones and glucose- insulin-lipid defect in men with obesity. Metabolism 42: 116, 1993.

    Article  CAS  PubMed  Google Scholar 

  40. Caufriez A., Golstein J., Lebrun P., Herchuelz A., Furlanetto R., Copinschi G. Relations between immunoreactive somatomedin C, insulin and T3 patterns during fasting in obese subjects. Clin. Endocrinol. (Oxf.) 20: 65, 1984.

    Article  CAS  Google Scholar 

  41. Azziz R., Zacur H.A., Parker C.R. Jr., Bradley E.L. Jr., Boots L.R. Effect of obesity on the response to acute adrenocorticotropin stimulation in eumenorrhoic women. Fertil. Steril. 56: 427, 1991.

    CAS  PubMed  Google Scholar 

  42. Barrett-Connor E., Ferrara A. Dehydroepiandrosterone, dehydroepiandrosterone sulfate, obesity, waist-hip ratio, and noninsulin-dependent diabetes in postmenopausal women: the Rancho Bernardo Study. J. Clin. Endocrinol. Metab. 81: 59, 1996.

  43. Hochberg Z., Hertz P., Colin V., Ish-shalom S., Yeshurun D., Youdim M.B.H., Amit T. The distal axis of growth hormone (GH) in nutritional disorder: GH-binding protein, insulin-like growth factor- I (IGF-I), and IGF-I receptors in obesity and anorexia nervosa. Metabolism 41: 106, 1992.

    Article  CAS  PubMed  Google Scholar 

  44. Tchernof A., Labrie F., Bélanger A., Després J.P. Obesity and metabolic complications: contribution of dehydroepiandrosterone and other steroid hormones. Endocrinology 150: S155, 1996.

    CAS  Google Scholar 

  45. Nestler J.E., Clore J.N., Strauss J.F., Blackard W.G. The effect of hyperinsulinemia on serum testosterone, progesterone, dehyepiandrosterone sulfate, and cortisol levels in normal women and in a woman with hyperandrogenism, insulin resistance, and acanthosis nigricans. J. Clin. Endocrinol. Metab. 64: 180, 1987.

    Article  CAS  PubMed  Google Scholar 

  46. Houston B., O’Neil I.E. Insulin and growth hormone act synergistically to stimulate insulin-like growth factor-I production by cultered chicken hepatocytes. J. Endocrinol. 128: 389, 1991.

    Article  CAS  PubMed  Google Scholar 

  47. Nestler J.E., McClanahan, Clore J.N., Blackard W.G. Insulin inhibits adrenal 17, 20-lyase activity in man. J. Clin. Endocrinol. Metab. 74: 362, 1992.

    CAS  PubMed  Google Scholar 

  48. Clemmons D.R., Van Wyk J.J. Factors controlling blood concentrations of somatomedin C. J. Clin. Endocrinol. Metab. 13: 113, 1984.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleandri, S.E., Maccario, M., Rossetto, R. et al. Three-month treatment with metformin or dexfenfluramine does not modify the effects of diet on anthropometric and endocrine-metabolic parameters in abdominal obesity. J Endocrinol Invest 22, 134–140 (1999). https://doi.org/10.1007/BF03350893

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350893

Key-words

Navigation