Skip to main content
Log in

Risedronate prevents the loss of microarchitecture in glucocorticoid-induced osteoporosis in rats

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Osteoporosis is a severe complication of glucocorticoid treatment. Bisphosphonates are a powerful therapeutic option to prevent osteoporotic fractures. The aims of this study were: a) to determine bone alterations induced by therapy with glucocorticoids (GC); b) to establish the efficacy of risedronate (Ris) in the prevention of these effects. We studied 40 female Sprague-Dawley rats randomly divided into 4 groups of treatment, administered 3 times a week sc: 1. Control: vehicle of methylprednisolone (GC) + vehicle of Ris; 2. Ris: Ris 5 μg/kg body weight vehicle of GC; 3. GC: GC 7 mg/kg + vehicle of Ris; 4. GC+Ris: GC 7 mg/kg, Ris 5 μg/kg. Animals were treated for 30 days and then were sacrificed. Densitometry was performed at baseline and at the end of the treatment. Right tibiae were removed for histomorphometric analyses. The GC group showed a 7% decrease in bone density vs controls (p<0.05), while the GC+Ris group was associated with a 3.5% increase in bone density vs controls (p<0.05). In the GC group, histomorphometric evaluations showed reduced bone volume (BV/TV) and thinning of trabeculae (Tb.Th) vs controls (BV/TV: 31±1 vs 35±1%, p<0.05; Tb.Th: 43±2 vs 50±3 μm, p<0.01; Ac.f: 1.8±0.2 vs 1.6±0.3 N/yr). The GC+Ris group had increased BV/TV and Tb.Th, and reduced Ac.f vs the GC group. Ris also maintained trabecular microarchitecture. At the histological level, glucocorticoid-induced osteoporosis was characterized by decreased bone volume, reduced osteoblastic activity, and deterioration of microarchitecture. Ris counteracted these effects both by prolonging osteoblast activity, and by maintaining bone microarchitecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reid IR. Glucocorticoid-induced osteoporosis: assessment and treatment. J Clin Densitom 1998, 1: 65–73.

    Article  PubMed  CAS  Google Scholar 

  2. Van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C. Use of Oral Corticosteroid and risk of fractures. J Bone Miner Res 2000, 15: 993–1000.

    Article  PubMed  Google Scholar 

  3. Adinoff AD, Hollister JR. Steroid-induced fracture and bone loss in patients with asthma. N Eng J Med 1983, 309: 265–8.

    Article  CAS  Google Scholar 

  4. Cooper C, Coupland C, Mitchell M. Rheumatoid arthritis, corticosteroid therapy and hip fracture. Ann Rheum Dis 1995, 54: 49–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med 1998, 339: 292–9.

    Article  PubMed  CAS  Google Scholar 

  6. Reid DM, Hughes RA, Laan RF, et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J Bone Miner Res 2000, 15: 1006–13.

    Article  PubMed  CAS  Google Scholar 

  7. Adachi JD, Saag KG, Delmas PD, et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 2001, 44: 202–11.

    Article  PubMed  CAS  Google Scholar 

  8. Reid DM, Adami S, Devogelaer JP, Chines AA. Risedronate increases bone density and reduces vertebral fracture risk within one year in men on corticosteroid therapy. Calcif Tissue Int 2001, 69: 242–7.

    Article  PubMed  CAS  Google Scholar 

  9. Sambrook PN, Kotowicz M, Nash P, et al. Prevention and treatment of glucocorticoid-induced osteoporosis: a comparison of calcitriol, vitamin D plus calcium, and alendronate plus calcium. J Bone Miner Res 2003, 18: 919–24.

    Article  PubMed  CAS  Google Scholar 

  10. Erb N, Duncan RC, Raza K, et al. A regional audit of the prevention and treatment of corticosteroid-induced osteoporosis in patients with rheumatic diseases in the West Midlands. Rheumatology (Oxford) 2002, 41: 1021–4.

    Article  CAS  Google Scholar 

  11. Walsh LJ, Lewis SA, Wong CA, et al. The impact of oral corticosteroid use on bone mineral density and vertebral fracture. Am J Respir Crit Care Med 2002, 166: 691–5.

    Article  PubMed  Google Scholar 

  12. Van Staa TP, Laan RF, Barton IP, Cohen S, Reid DM, Cooper C. Bone density threshold and other predictors of vertebra fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 2003, 48: 3224–9.

    Article  PubMed  CAS  Google Scholar 

  13. Dempster DW. The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 2000, 15: 20–3.

    Article  PubMed  CAS  Google Scholar 

  14. Weinstein RS, Chen JR, Powers CC, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest 2002, 109: 1041–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000, 21: 115–37.

    PubMed  CAS  Google Scholar 

  16. Chappard D, Legrand E, Basle MF, et al. Altered trabecular architecture induced by corticosteroids: A bone histomorphometric study. J Bone Miner Res 1996, 11: 676–85.

    Article  PubMed  CAS  Google Scholar 

  17. Dalle Carbonare L, Arlot ME, Chavassieux PM, Roux JP, Portero NR, Meunier PJ. Comparison of trabecular bone microarchitecture and remodelling in glucocorticoid-induced and postmenopausal osteoporosis. J Bone Miner Res 2001, 16: 97–103.

    Article  CAS  Google Scholar 

  18. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann NY Acad Sci 2002, 966: 73–81.

    Article  PubMed  CAS  Google Scholar 

  19. O’Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytesto induce their apoptosis and reduce bone formation and strength. Endocrinology 2004, 145: 1835–41.

    Article  PubMed  CAS  Google Scholar 

  20. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 1999, 104: 1363–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Bressot C, Meunier PJ, Chapuy MC, Lejeune E, Edouard C, Darby AJ. Histomorphometric profile, pathophysiology and reversibility of corticosteroid-induced osteoporosis. Metab Bone Dis Rel Res 1979, 1: 303–11.

    Article  Google Scholar 

  22. Chavassieux PM, Arlot ME, Roux JP, wt al. Effects of alendronate on bone quality and remodeling in glucocorticoid-induced osteoporosis: a histomorphometricanalysisof transiliac biopsies. J Bone Miner Res 2000, 15: 754–62.

    Article  PubMed  CAS  Google Scholar 

  23. Borah B, Dufresne TE, Chmielewski PA, Gross GJ, Prenger MC, Phipps RJ. Risedronate preserves trabecular architecture and increases bone strength in vertebra in ovariectomized minipigs as measured by three-dimensional microcomputed thomography. J Bone Miner Res 2002, 17: 1139–47.

    Article  PubMed  CAS  Google Scholar 

  24. Kimmel DB. Quantitative histologic changes in the proximal tibial growth cartilage of aged female rats. Scanning Microsc 1991, suppl 1: 11–8.

  25. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987, 6: 595–610.

    Google Scholar 

  26. Mellish RW, Ferguson-Pell MW, Cochran GV, Lindsay R, Dempster DW. A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 1991, 6: 689–96.

    Article  PubMed  CAS  Google Scholar 

  27. Vesterby A, Gundersen HJG, Melsen F. Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 1989, 10: 7–13.

    Article  PubMed  CAS  Google Scholar 

  28. Weinstein RS, Majumdar S. Fractal geometry and vertebral compression fractures. J Bone Miner Res 1994, 9: 1797–802.

    Article  PubMed  CAS  Google Scholar 

  29. Aaron JE, Makins NB, Sagreiya K. The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Related Res 1987, 215: 260–71.

    Google Scholar 

  30. Li XJ, Jee WSS, Ke HZ, Mori S, Akamine T. Age-related changes of cancellous and cortical bone histomorphometry in female Sprague-Dawley rats. Scanning Microsc 1991, suppl 1: 25–35.

  31. Chavassieux P, Pastoureau P, Chapuy MC, Delmas PD, Meunier PJ. Glucocorticoid-induced inhibition of osteoblastic bone formation in ewes: a biochemical and histomorphometric study. Osteoporos Int 1993, 3: 97–102.

    Article  PubMed  CAS  Google Scholar 

  32. Dempster DW, Arlot MA, Meunier PJ. Mean wall thickness and formation period of trabecular bone packets in corticosteroid osteoporosis. Calcif Tissue Int 1983, 35: 410–7.

    Article  PubMed  CAS  Google Scholar 

  33. Dalle Carbonare L, Valenti MT, Bertoldo F, et al. Bone microarchitecture evaluated by histomorphometry. Micron 2005, 36: 609–16.

    Article  Google Scholar 

  34. Dalle Carbonare L, Giannini S. Bone microarchitecture as a determinant of bone strength. J Endocrinol Invest 2004, 27: 99–105.

    Article  Google Scholar 

  35. Borah B, Dufresne TE, Chmielewski PA, Johnson TD, Chines A, Manhart MD. Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 2004, 34: 736–46.

    Article  PubMed  CAS  Google Scholar 

  36. Frost HM, Jee WS. On the rat model of human osteopenias and osteoporoses. Bone Miner 1992, 18: 227–36.

    Article  PubMed  CAS  Google Scholar 

  37. Mosekilde L. Assessing bone quality — animal models in preclinical osteoporosis research. Bone 1995, 17 (Suppl 4): 343S–52S.

    Article  PubMed  CAS  Google Scholar 

  38. Audran M, Chappard D, Legrand E, Libouban H, Baslé MF. Bone microarchitecture and bone fragility in men: DXA and histomorphometry in humans and in the orchiectomized rat model. Calcif Tissue Int 2001, 69: 214–7.

    Article  PubMed  CAS  Google Scholar 

  39. Nakamuta H, Nitta T, Hoshino T, Koida M. Glucocorticoid-induced osteopenia in rats: histomorphometrical and microarchitectural characterization and calcitonin effect. Bio Pharm Bull 1996, 19: 217–9.

    Article  CAS  Google Scholar 

  40. Wimalawansa SJ, Simmons DJ. Prevention of corticosteroid-induced bone loss with alendronate. Proc Soc Exp Biol Med 1998, 217: 162–7.

    Article  PubMed  CAS  Google Scholar 

  41. Hulley PA, Conradie MM, Langeveldt CR, Hough FS. Glucocorticoid-induced osteoporosis in the rat is prevented by the tyrosine phosphatase inhibitor, sodium orthovanadate. Bone 2002, 31: 220–9.

    Article  PubMed  CAS  Google Scholar 

  42. Mosekilde L, Thomsen JS, Mackey MS, Phipps RJ. Treatment with residronate or alendronate prevents hind-limb immobilization-induced loss of bone density and strength in adult female rats. Bone 2000, 27: 639–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dalle Carbonare MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalle Carbonare, L., Bertoldo, F., Valenti, M.T. et al. Risedronate prevents the loss of microarchitecture in glucocorticoid-induced osteoporosis in rats. J Endocrinol Invest 30, 739–746 (2007). https://doi.org/10.1007/BF03350811

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350811

Key-words

Navigation