Skip to main content
Log in

Acute changes in clinical parameters and thyroid function peripheral markers following L-T4 withdrawal in patients totally thyroidectomized for thyroid cancer

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

After total thyroidectomy, differentiated thyroid cancer (DTC) patients have to undergo L–T4 withdrawal for measuring serum thyroglobulin and 131I whole-body scan (131I WBS) to evaluate residual/recurrent malignant disease. The aim of the present work was to study in these patients the effects of acute thyroid hormone deficiency on various target organs and tissues. Clinical parameters and thyroid function peripheral markers were evaluated in 20 DTC patients, both before and after L–T4 withdrawal. A 24-h urine collection, a fasting blood sample for laboratory examinations, a clinical score for hypothyroidism and cardiovascular, neurological and neuropsy-chological evaluations were carried out. After L–T4 withdrawal, the clinical score significantly increased, as well as total cholesterol, triglycerides, creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase, whereas SHBG, osteocalcin and urine hydroxyproline levels significantly decreased. The acute thyroid hormone deficiency caused a systolic dysfunction of the left ventricle associated with an increase in systemic vascular resistance without cardiac contractility alterations. A significant increase in the left ventricular mass and thickness was also observed. Carpal tunnel syndrome appeared in 30% of patients and a significant reduction in the immediate auditive memorization and in attentive performance was also detected. These observations indicate that acute hypothyroidism causes significant clinical alterations of peripheral tissue function. In the follow-up of DTC patients, therefore, L–T4 withdrawal procedure should be restricted to cases where the cost/benefit ratio is favorable. Alternative procedures, such as the use of recombinant human TSH, should be used whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherman SI. Thyroid carcinoma. Lancet 2003, 361: 501–11.

    Article  PubMed  Google Scholar 

  2. Robbins RJ, Robbins AK. Recombinant human thyrotropin and thyroid cancer management. J Clin Endocrinol Metab 2003, 88: 1933–8.

    Article  PubMed  CAS  Google Scholar 

  3. Dow KH, Ferrel BR, Anello C. Quality of life changes in patients with thyroid cancer after withdrawal of thyroid hormone therapy. Thyroid 1997, 7: 613–9.

    Article  PubMed  CAS  Google Scholar 

  4. Zulewski H, Muller B, Exer P, Miserez AR, Staub JJ. Estimation of tissue hypothyroidism by a new clinical score: evaluation of patients with various grades of hypothyroidism and controls. J Clin Endocrinol Metab 1997, 82: 771–6.

    PubMed  CAS  Google Scholar 

  5. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978, 58: 1072–83.

    Article  PubMed  CAS  Google Scholar 

  6. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-dimensional Echocardiograms. J Am Soc Echocardiogr 1989, 2: 358–67.

    CAS  Google Scholar 

  7. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977, 55: 613–8.

    Article  CAS  Google Scholar 

  8. Schiller NB, Acquatella H, Ports TA, et al. Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation 1979, 60: 547–55.

    Article  PubMed  CAS  Google Scholar 

  9. Antonini-Canterin F, Pavan D, Nicolosi GL. Valutazione ecocardiografica dei volumi e della funzione sistolica globale del ventricolo sinistro. Ital Heart J (Suppl 1) 2000, 10: 1261–72.

    Google Scholar 

  10. Stefadouros MA, Dougherty MJ, Grossman W, Craige E. Determination of systemic vascular resistance by noninvasive technique. Circulation 1973, 47: 101–7.

    Article  PubMed  CAS  Google Scholar 

  11. Rokey R, Kuo LC, Zoghbi WA, Limacher MC, Quinones MA. Determination of parameters of left ventricular diastolic filling with pulsed Doppler echocardiography: comparison with cineangiography. Circulation 1985, 71: 543–50.

    Article  PubMed  CAS  Google Scholar 

  12. Sagawa K, Suga H, Shoukas AA, Bakalar KM. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 1977, 40: 748–53.

    Article  PubMed  CAS  Google Scholar 

  13. Tseng KH, Walfish PG, Persaud JA, Gilbert BW. Concurrent aortic and mitral valve echocardiography permits measurement of systolic time intervals as an index of peripheral tissue thyroid functional status. J Clin Endocrinol Metab 1989, 69: 633–8.

    Article  PubMed  CAS  Google Scholar 

  14. Galderisi M, Benjamin EJ, Evans JC, et al. Impact of heart rate and PR interval on Doppler indexes of left ventricular diastolic filling in an elderly cohort (the Framingham Heart Study). Am J Cardiol 1993, 72: 1183–7.

    Article  PubMed  CAS  Google Scholar 

  15. Brandsma JW, Schreuders TA, Birke JA, Piefer A, Oostendorp R. Manual muscle strength testing: intraobserver and interobserver reliabilities for the intrinsic muscles of the hand. J Hand Ther 1995, 8: 185–90.

    Article  PubMed  CAS  Google Scholar 

  16. Dyck PJ, Zimmerman IR, O’Brien PC, et al. Introduction of automated systems to evaluate touch-pressure, vibration, and thermal cutaneous sensation in man. Ann Neurol 1978, 4: 502–10.

    Article  PubMed  CAS  Google Scholar 

  17. Wechsler D. WAIS-R manual: Wechsler adult intelligent scale 1981 Rev. New York: Harcourt Brace Jovanovich.

  18. Thurber S, Snow M, Honts CR. The Zung Self-Rating Depression Scale: convergent validity and diagnostic discrimination. Assessment 2002, 9: 401–5.

    Article  PubMed  Google Scholar 

  19. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the state-trait anxiety inventory (form Y). Palo Alto, CA: Consulting Psycologist Press 1983.

    Google Scholar 

  20. Meier C, Trittibach P, Guglielmetti M, Staub JJ, Muller B. Serum thyroid stimulating hormone in assessment of severity of tissue hypothyroidism in patients with overt primary thyroid failure: cross sectional survey. BMJ 2003, 326: 311–2.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Elder J, McClelland A, O’Reilly DS, Packard CJ, Series JJ, Shepherd J. The relationship between serum cholesterol and serum thyrotropin, thyroxine and triiodothyronine concentrations in suspected hypothyroidism. Ann Clin Biochem 1990, 27: 110–3.

    Article  PubMed  Google Scholar 

  22. Smallridge RC. Metabolic physiologic, and clinical indexes of thyroid function. In: Braverman LE, Utiger RD eds. Wenner and Ingbar’s the thyroid, 7th ed. Philadelphia: Lippincott. 1996, 397–405.

    Google Scholar 

  23. Pucci E, Chiovato L, Pinchera A. Thyroid and lipid metabolism. Int J Obes Relat Metab Disord 24 (Suppl 2) 2000, S109–112

    Article  PubMed  CAS  Google Scholar 

  24. Duntas LH. Thyroid disease and lipids. Thyroid 2002, 12: 287–93.

    Article  PubMed  CAS  Google Scholar 

  25. Saha B, Maity C. Alteration of serum enzymes in primary hypothyroidism. Clin Chem Lab Med 2002, 40: 609–11.

    Article  PubMed  CAS  Google Scholar 

  26. Beyer IW, Karmali R, Demeester-Mirkine N, Cogan E, Fuss MJ. Serum creatine kinase levels in overt and subclinical hypothyroidism. Thyroid 1998, 8: 1029–31.

    Article  PubMed  CAS  Google Scholar 

  27. Brenta G, Schnitman M, Gurfinkiel M, et al. Variations of sex hormone-binding globulin in thyroid dysfunction. Thyroid 1999, 9: 273–7.

    Article  PubMed  CAS  Google Scholar 

  28. Bicikova M, Hampl R, Hill M, Stanicka S, Tallova J, Vondra K. Steroids, sex-hormone binding globulin, homocysteine, selected hormones and markers of lipid and carbohydrate metabolism in patients with severe hypothyroidism and their changes following thyroid hormone supplementation. Clin Chem Lab Med 2003, 41: 284–92.

    Article  PubMed  CAS  Google Scholar 

  29. Weissel M, Kainz H, Hofer R. Changes in biochemical parameters during complete thyroid hormone deficiency of short duration in athyreotic patients. J Nucl Med 1986, 27: 1528–32.

    PubMed  CAS  Google Scholar 

  30. Gam AN, Jensen GF, Hasselstrom K, Olsen M, Nielsen KS. Effect of thyroxine therapy on bone metabolism in substituted hypothyroid patients with normal or suppressed levels of TSH. J Endocrinol Invest 1991, 14: 451–5.

    Article  PubMed  CAS  Google Scholar 

  31. Engler H, Oettli RE, Riesen W F. Biochemical markers of bone turnover in patients with thyroid dysfunctions and in euthyroid controls: a cross-sectional study. Clin Chim Acta 1999, 289: 159–72.

    Article  PubMed  CAS  Google Scholar 

  32. Toivonen J, Tahtela R, Laitinen K, Risteli J, Valimaki MJ. Markers of bone turnover in patients with differentiated thyroid cancer with and following withdrawal of thyroxine suppressive therapy. Eur J Endocrinol 1998, 138: 667–73.

    Article  PubMed  CAS  Google Scholar 

  33. Kojima N, Sakata S, Nakamura S, et al. Serum concentrations of osteocalcin in patients with hyperthyroidism, hypothyroidism and subacute thyroiditis. J Endocrinol Invest 1992, 15: 491–6.

    Article  PubMed  CAS  Google Scholar 

  34. Arem R, Rokey R, Kiefe C, Escalante DA, Rodriguez A. Cardiac systolic and diastolic function at rest and exercise in subclinical hypothyroidism: effect of thyroid hormone therapy. Thyroid 1996, 6: 397–402.

    Article  PubMed  CAS  Google Scholar 

  35. Monzani F, Di Bello V, Caraccio N, et al. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study. J Clin Endocrinol Metab 2001, 86: 1110–5.

    Article  PubMed  CAS  Google Scholar 

  36. Biondi B, Fazio S, Palmieri EA, et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J Clin Endocrinol Metab 1999, 84: 2064–7.

    Article  PubMed  CAS  Google Scholar 

  37. Tielens ET, Pillay M, Storm C, Berghout A. Changes in cardiac function at rest before and after treatment in primary hypothyroidism. Am J Cardiol 2000, 85: 376–80.

    Article  PubMed  CAS  Google Scholar 

  38. Virtanen VK, Saha HH, Groundstroem KW, Salmi J, Pasternack AI. Thyroid hormone substitution therapy rapidly enhances left-ventricular diastolic function in hypothyroid patients. Cardiology 2001, 96: 59–64.

    Article  PubMed  CAS  Google Scholar 

  39. Wieshammer S, Keck FS, Waitzinger J, et al. Left ventricular function at rest and during exercise in acute hypothyroidism. Br Heart J 1988, 60: 204–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Kahaly G, Mohr-Kahaly S, Beyer J, Meyer J. Left ventricular function analyzed by Doppler and echocardiographic methods in short-term hypothyroidism. Am J Cardiol 1995, 75: 645–8.

    Article  PubMed  CAS  Google Scholar 

  41. Grossmann G, Wieshammer S, Keck FS, Goller V, Giesler M, Hombach V. Doppler echocardiographic evaluation of left ventricular diastolic function in acute hypothyroidism. Clin Endocrinol (Oxf) 1994, 40: 227–33.

    Article  CAS  Google Scholar 

  42. Grossmann G, Keck FS, Wieshammer S, Goller V, Schmidt A, Hombach V. Systolic ventricular function in acute hypothy-roidism: a study using Doppler echocardiography. Exp Clin Endocrinol 1994, 102: 104–10.

    Article  PubMed  CAS  Google Scholar 

  43. Price DE, O’Malley BP, Northover B, Rosenthal FD. Changes in circulating thyroid hormone levels and systolic time intervals in acute hypothyroidism. Clin Endocrinol (Oxf), 1991, 35: 67–9.

    Article  CAS  Google Scholar 

  44. Krosl P, Abel FL. Problems with use of the end systolic pressure-volume slopes an indicator of left ventricular contractility: an alternate method. Shock 1998, 10: 285–91.

    Article  PubMed  CAS  Google Scholar 

  45. McClain LC, Wright LD, Bose RK, Spratt JA, Maier GW. Afterload sensitivity of nonlinear end-systolic pressure-volume relation vs. preload recruitable stroke work in conscious dogs. J Surg Res 1998, 75: 6–17.

    CAS  Google Scholar 

  46. Ojamaa K, Balkman C, Klein IL. Acute effects of triiodothyronine on arterial smooth muscle cells. Ann Thorac Surg 1993, 56: S61–7.

    Article  PubMed  CAS  Google Scholar 

  47. Nakao J, Chang WC, Murota S, Orimo H. Triiodothyronine stimulates prostacyclin production by rat aortic smooth muscle cells in culture. Atherosclerosis 1981, 39: 439–45.

    Article  PubMed  CAS  Google Scholar 

  48. Biondi B, Palmieri EA, Lombardi G, Fazio S. Effects of thyroid hormone on cardiac function. The relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 2002, 87: 968–74.

    CAS  Google Scholar 

  49. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 2001, 344: 501–9.

    Article  PubMed  CAS  Google Scholar 

  50. Parving HH, Hansen JM, Nielsen SL, Rossing N, Munck O, Lassen NA. Mechanisms of edema formation in myxo-edema-increased protein extravasation and relatively slow lymphatic drainage. N Engl J Med 1979, 301: 460–5.

    Article  PubMed  CAS  Google Scholar 

  51. Ozkardes A, Ozata M, Beyhan Z, et al. Acute hypothyroidism leads to reversible alterations in central nervous system as revealed by somatosensory evoked potentials. Electroen-cephalogr Clin Neurophysiol 1996, 100: 500–4.

    Article  CAS  Google Scholar 

  52. Duyff RF, Van den Bosch J, Laman DM, van Loon BJ, Linssen WH. Neuromuscular findings in thyroid dysfunction: a prospective clinical and electrodiagnostic study. J Neurol Neurosurg Psychiatry 2000, 68: 750–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Khedr EM, El Toony LF, Tarkhan MN, Abdella G. Peripheral and central nervous system alterations in hypothyroidism: electrophysiological findings. Neuropsychobiology 2000, 41: 88–94.

    Article  PubMed  CAS  Google Scholar 

  54. Rao SN, Katiyar BC, Nair KR, Misra S. Neuromuscular status in hypothyroidism. Acta Neurol Scand 1980, 61: 167–77.

    Article  PubMed  CAS  Google Scholar 

  55. Nemni R, Bottacchi E, Fazio R, et al. Polyneuropathy in hypothyroidism: clinical, electrophysiological and morphological findings in four cases. J Neurol Neurosurg Psychiatry 1987, 50: 1454–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Palumbo CF, Szabo RM, Olmsted SL. The effects of hypothyroidism and thyroid replacement on the development of carpal tunnel syndrome. J Hand Surg [Am] 2000, 25: 734–9.

    Article  CAS  Google Scholar 

  57. Cruz MW, Tendrich M, Vaisman M, Novis SA. Electroneuromyography and neuromuscular findings in 16 primary hypothyroidism patients. Arq Neuropsiquiatr 1996, 54: 12–8.

    Article  PubMed  CAS  Google Scholar 

  58. Purnell DC, Daly DD, Lipscomb PR. Carpal tunnel syndrome associated with myxoedema. Arch Intern Med 1961, 108: 751–6.

    Article  PubMed  CAS  Google Scholar 

  59. Misiunas A, Niepomniszcze H, Ravera B, Faraj G, Faure E. Peripheral neuropathy in subclinical hypothyroidism. Thyroid 1995, 5: 283–6.

    Article  PubMed  CAS  Google Scholar 

  60. Burmeister LA, Ganguli M, Dodge HH, Toczek T, DeKosky ST, Nebes RD. Hypothyroidism and cognition: preliminary evidence for a specific defect in memory. Thyroid 2001, 11: 1177–85.

    Article  PubMed  CAS  Google Scholar 

  61. Constant EL, de Volder AG, Ivanoiu A, et al. Cerebral blood flow and glucose metabolism in hypothyroidism: a positron emission tomography study. J Clin Endocrinol Metab 2001, 86: 3864–70.

    Article  PubMed  CAS  Google Scholar 

  62. Guimaraes V, DeGroot LJ. Moderate hypothyroidism in preparation for whole body 131I scintiscans and thyroglobulin testing. Thyroid 1996, 6: 69–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Regalbuto MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regalbuto, C., Alagona, C., Maiorana, R. et al. Acute changes in clinical parameters and thyroid function peripheral markers following L-T4 withdrawal in patients totally thyroidectomized for thyroid cancer. J Endocrinol Invest 29, 32–40 (2006). https://doi.org/10.1007/BF03349174

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349174

Key-words

Navigation