Skip to main content
Log in

Effects of 17β-estradiol, tamoxifen and raloxifene on the protein and mRNA expression of interleukin-6, transforming growth factor-β1 and insulin-like growth factor-1 in primary human osteoblast cultures

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

We investigated the effects of 17β- estradiol and two selective estrogen receptor modulators, tamoxifen and raloxifene, on the expression and release of constitutive and interleukin- 1-stimulated interleukin (IL)-6, transforming growth factor-β1 (TGF-β1) and insulin-like growth factor-1 by osteoblasts in primary culture from trabecular bone of healthy post-menopausal women. After 24 h incubation with 10-8 M concentration of these compounds, there was no decrease in: a) the constitutive or IL-1β-induced levels of IL-6 protein released to culture medium; b) the constitutive IL-6 mRNA expression after incubation of osteoblasts with 10−8 M 17β- estradiol or 10−8 M tamoxifen for 1, 3, 6, 24 or 30 h. Although a decrease after 30 h of treatment with 10−8 M, raloxifene was found in mRNA IL-6 expression, and this fact was not reflected by a decrease in the release of IL-6 protein to the culture medium after 48 h of incubation with 10−8 M or 10−8 M raloxifene. Tumoral growth factorTGF-β1 expression was not influenced by incubation with these compounds. Gene expression of IGF-I increased following 24 or 30 h incubation with 10−8 M 17β-estradiol and 30 h incubation with raloxifene. Tamoxifen did not affect IGF-I expression. In conclusion, the effects of estradiol or tamoxifen on bone metabolism do not appear to be mediated through the regulation of osteoblast IL-6 release or synthesis, but raloxifene produces a decrease in mRNA IL-6 expression. The actions of estradiol, tamoxifen and raloxifene do not appear to be mediated by tumoral growth factor TGF-β1. On the other hand, an increase in IGF-I synthesis induced by raloxifene and estradiol could mediate, in part, the effects of these compounds on bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994, 55: 273–86.

    Article  PubMed  CAS  Google Scholar 

  2. Riggs BL, Khosla S, Melton LJ. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998, 13: 763–73.

    Article  PubMed  CAS  Google Scholar 

  3. Spelsberg TC, Subramaniam M, Riggs BL, Khosla S. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endocrinol 1999, 13: 819–28.

    Article  PubMed  CAS  Google Scholar 

  4. Walsh CA, Birch MA, Fraser WD, Ginty AF, Gallagher JA. Cytokine expression by cultured osteoblasts from patients with osteoporotic fractures. Int J Exp Pathol 2000, 81: 159–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Pacifici R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 1996, 11: 1043–51.

    Article  PubMed  CAS  Google Scholar 

  6. Kveiborg M, Flyvbjerg A, Eriksen EF, Kassem M. Transforming growth factor-β1 stimulates the production of insulin-like growth factor-I and insulin growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors. J Endocrinol 2001, 169: 549–61.

    Article  PubMed  CAS  Google Scholar 

  7. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995, 332: 305–31.

    Article  PubMed  CAS  Google Scholar 

  8. Jilka RL, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss: mediation by interleukin- 6. Science 1992, 257: 88–91.

    Article  PubMed  CAS  Google Scholar 

  9. Keller ET, Binkley NC, Stebler BA, et al. Ovariectomy does not induce osteopenia through interleukin-6 in Rhesus monkey (Macaca Mulata). Bone 2000, 26: 55–62.

    Article  PubMed  CAS  Google Scholar 

  10. Kimble RB, Bain S, Pacifici R. The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res 1997, 12: 935–41.

    Article  PubMed  CAS  Google Scholar 

  11. Rickard D, Russell G, Gowen M. Oestradiol inhibits the release of tumour necrosis factor but not interleukin 6 from adult human osteoblasts in vitro. Osteoporos Int 1992, 2: 94–102.

    Article  PubMed  CAS  Google Scholar 

  12. Chaudhary LR, Spelsberg TC, Riggs BL. Production of various cytokines by normal human osteoblast-like cells in response to IL-1beta and tumour necrosis factor-alpha: Lack of regulation by 17beta-estradiol. Endocrinology 1992, 130: 2528–34.

    PubMed  CAS  Google Scholar 

  13. Erlebacher A, Filvaroff EH, Ye JQ, Derynck R. Osteoblastic responses to TGF-beta during bone remodeling. Mol Biol Cell 1998; 9: 1903–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Hock JM, Canalis E, Centrella M. Transforming growth factor- beta stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvaria. Endocrinology 1990, 126: 421–6.

    Article  PubMed  CAS  Google Scholar 

  15. Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop 1990, 250: 261–76.

    PubMed  Google Scholar 

  16. Schmidmaier G, Wildemann B, Lubberstedt M, Haas NP, Raschke M. IGF-I and TGF-beta 1 incorporated in a poly (D,Llactide) implant coating stimulates osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation in cell culture. J Biomed Mater Res 2003, 65:157–62.

    Article  CAS  Google Scholar 

  17. Pfeilschifter JP, Seyedin S, Mundy GR. Transforming growth factor beta inhibits bone resorption in fetal rat long bone cultures. J Clin Invest 1998, 82: 680–5.

    Article  Google Scholar 

  18. Dieudonné SC, Foo P, Van Zoelen EJJ, Burger EH. Inhibiting and stimulating effects of TGF-β1 on osteoclasic bone resorption in fetal mouse bone organ cultures. J Bone Miner Res 1991, 6: 479–87.

    Article  PubMed  Google Scholar 

  19. Marceli C, Yates AJ, Mundy GR. In vivo effects of human recombinant transforming growth factor-beta on bone turnover in normal mice. J Bone Miner Res 1991, 5: 1087–96.

    Article  Google Scholar 

  20. Chenu C, Pfeilschifter JP, Mundy GR, Roodman GD. Transforming growth factor β inhibits formation of osteoclast-like cells in long-term human marrow cultures. Proc Natl Acad Sci USA 1988, 85: 5683–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 1998, 13: 793–802.

    Article  PubMed  CAS  Google Scholar 

  22. Hock JM, Centrella M, Canalis E. Insulin-like growth factor I has independent effect on bone matrix formation and cell replication. Endocrinology 1988, 122: 254–60.

    Article  PubMed  CAS  Google Scholar 

  23. Wergedal JE, Mohan S, Lundy M, Baylink DJ. Skeletal growth factor and other factors known to be present in bone matrix stimulate proliferation and protein synthesis in human bone cells. J Bone Miner Res 1990, 5: 179–86.

    Article  PubMed  CAS  Google Scholar 

  24. Torricelli P, Fini M, Giavaresi G, Giardino R. Osteoblasts cultured from osteoporotic bone: a comparative investigation on human and animal-derived cells. Artif Cells Blood Substit Immobil Biotechnol 2003, 31: 263–77.

    Article  PubMed  CAS  Google Scholar 

  25. Waters KM, Rickard DJ, Riggs BL, et al. Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform. J Cell Biochem 2001, 83: 448–62.

    Article  PubMed  CAS  Google Scholar 

  26. Nasu M, Sugimoto T, Kaji H, Chihara K. Estrogen modulates osteoblast proliferation and function regulated by parathyroid hormone in osteoblastic SaOS-2 cells: role of insulin growth factor (IGF-I) and IGF-binding protein-5. J Endocrinol 2000, 167: 305–13.

    Article  PubMed  CAS  Google Scholar 

  27. Draper MW. The role of selective estrogen receptor modulators (SERMs) in postmenopausal health. Ann N Y Acad Sci 2003, 997: 373–7.

    Article  PubMed  CAS  Google Scholar 

  28. Marie PJ, Lomri A, Sabbagh A, Basle M. Culture and behaviour of osteoblastic cells isolated from normal trabecular bone surfaces. In Vitro Cell Dev Biol 1989, 25: 373–80.

    Article  PubMed  CAS  Google Scholar 

  29. Nacher M, Aubia J, Bosh J, Mariñoso ML, Hernández J, Serrano S. Caracterización de cultivos de osteoblastos humanos. Revista Española de Enfermedades Metabólicas óseas 1993, 2: 15–20.

    Google Scholar 

  30. Sur P, Sribnick EA, Wingrave JM, Nowak MW, Ray SK, Banik NL. Estrogen attenuates oxidative stress-induced apoptosis in C6 glial cells. Brain Res 2003, 971: 178–88.

    Article  PubMed  CAS  Google Scholar 

  31. Bradford MM. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248–54.

    Article  PubMed  CAS  Google Scholar 

  32. Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162: 156–9.

    Article  PubMed  CAS  Google Scholar 

  33. Kassem M, Okazaki R, Harris SA, Spelsberg TC, Conover CA, Riggs BL. Estrogen effects on insulin-like growth factor gene expression in a human osteoblastic cell line with high levels of estrogen receptor. Calcif Tissue Int 1998, 62: 60–6.

    Article  PubMed  CAS  Google Scholar 

  34. Sasse T, Becker P, Dorfling P, Schur T, Brock J. TGFβ-1 mRNA expression and proliferation of human osteoblastic cells in nonosteoporotic and osteoporotic women under influence of TGFβ-1 and IGF-I. Calcif Tissue Int 1998, 62: 60–6.

    Article  Google Scholar 

  35. De Miguel, Martínez Fernández P, Guillén C, et al. Parathyroid hormone-related protein (107–139) stimulates interleukin- 6 expression in human osteoblastic cells. J Am Soc Nephrol 1999, 10: 769–83.

    Google Scholar 

  36. Garcia-Ocaña A, Gomez-Casero E, Peñaranda C, Sarasa JL, Esbrit P. Cyclosporine increases renal parathyroid hormonerelated protein expression in vivo in the rat. Transplantation 1998, 65: 860–3.

    Article  PubMed  Google Scholar 

  37. Kurihara N, Bertolini D, Suda T, Akijama Y, Roodman GD. Interlukin-6 stimulates osteoclast-like multinucleated cell formation in long-term human marrow cultures by inducing IL-1 release. J Immunol 1990, 144: 426–30.

    Google Scholar 

  38. Reddy SV, Takahashi S, Dallas M, Willians RE, Neckers L, Roodman RD. Interleukin-6 antisense deoxyoligonucleotides inhibit bone resorption by giant cells from human giant cell tumors of bone. J Bone Miner Res 1994, 9: 753–7.

    Article  PubMed  CAS  Google Scholar 

  39. Kassem M. Cellular and molecular effects of growth hormone and estrogen on human bone cells. APMIS 1997, 105 (Suppl 71): 1–30.

    Google Scholar 

  40. Ireland DC, Bord S, Beavan SR, Compston JE. Effects of estrogen on collagen synthesis by cultured human osteoblasts depend on the rate of cellular differentiation. J Cell Biochem 2002, 86: 251–7.

    Article  PubMed  CAS  Google Scholar 

  41. Hierl T, Borcsök U, Sommer R, Ziegler C, Kasperk C. Regulation of interleukin-6 expression in human osteoblastic cells in vitro. Exp Clin Endocrinol Diabetes 1998, 106: 324–33.

    Article  PubMed  CAS  Google Scholar 

  42. Harris SA, Tau KR, Enger RJ, Toft DO, Riggs BL, Spelsberg TC. Estrogen response in the hFOB1.19 human fetal osteoblastic cell line stably transfected with the human estrogen receptor gene. J Cell Biochem 1995, 59: 193–201.

    Article  PubMed  CAS  Google Scholar 

  43. Kassem M, Harris SA, Spelsberg TC, Riggs BL. Estrogen inhibits interleukin-6 production and gene expression in a human osteoblastic cell line expressing high levels of estrogen receptors. J Bone Miner Res 1996, 11: 193–9.

    Article  PubMed  CAS  Google Scholar 

  44. Dovio A, Sartori ML, Masera RG, Racca S, Angeli A. Inhibitory effect of physiological concentrations of cortisol but not estradiol on interleukin (IL)-6 production by human osteoblast- like cell lines with different constitutive Il-6 expression. Cytokine 2001, 15: 47–52.

    Article  PubMed  CAS  Google Scholar 

  45. Tsai JA, Rong H, Torring O, Matsushita H, Bucht E. Interleukin- 1beta upregulates PTHrP-mRNA expression and protein production and decreases TGF-β in normal human osteoblast-like cells. Calcif Tissue Int 2000, 66: 363–9.

    Article  PubMed  Google Scholar 

  46. Yang NN, Bryant HU, Hardikar S, et al. Estrogen and raloxifene stimulate transforming growth factor-beta3 gene expression in rat bone: a potential mechanism for estrogenor raloxifene-mediated bone maintenance. Endocrinology 1996, 137: 2075–84.

    PubMed  CAS  Google Scholar 

  47. Oursler MJ, Cortese C, Keeting P, et al. Modulation of transforming growth factor-beta production in normal human osteoblast-like cells by 17beta-estradiol and parathyroid hormone. Endocrinology 1991, 129: 3313–20.

    Article  PubMed  CAS  Google Scholar 

  48. Ernst M, Rodan GA. Estradiol regulation of insulin-like growth factor-I expression in osteoblastic cells: evidence for transcriptional control. Mol Endocrinol 1991, 5: 1081–9.

    Article  PubMed  CAS  Google Scholar 

  49. Wuster C, Blum WF, Schlemilch S, Ranke MB, Ziegler RC. Decreased serum levels of insulin-like growth factors and IGF binding protein 3 in osteoporosis. J Intern Med 1993, 234: 249–55.

    Article  PubMed  CAS  Google Scholar 

  50. Thrailkill KM, Siddhanti SR, Fourlkes JL, Quarles LDC. Differentiation of MC3T3-E1 osteoblasts is associated with temporal changes in the expression of IGF-I and IGFBPs. Bone 1995, 17: 307–13.

    Article  PubMed  CAS  Google Scholar 

  51. Rosen CJ, Donaline LR, Hunter SJ. Insulin-like growth factors and bone: the osteoporosis connection. Proc Soc Exp Biol Med 1994, 206: 83–102.

    Article  PubMed  CAS  Google Scholar 

  52. Kveiborg M, Flyvbjerg A, Rattan SIS, Kassem M. Changes in the insulin-like growth factor-system may contribute to in vitro age-related impaired osteoblast function. Exp Gerontol 2000, 35: 1061–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. de la Piedra PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méndez-Dávila, C., García-Moreno, C., Turbì, C. et al. Effects of 17β-estradiol, tamoxifen and raloxifene on the protein and mRNA expression of interleukin-6, transforming growth factor-β1 and insulin-like growth factor-1 in primary human osteoblast cultures. J Endocrinol Invest 27, 904–912 (2004). https://doi.org/10.1007/BF03347531

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347531

Key-words

Navigation