Skip to main content
Log in

Effects of a short-term calcium and vitamin D treatment on serum cytokines, bone markers, insulin and lipid concentrations in healthy post-menopausal women

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

In vitro studies have shown that 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] decreases cytokine production by monocytes and lymphocytes. In addition, intravenous or oral pulse calcitriol treatment suppresses interleukin 6 (IL6) and interleukin1ß (IL1ß ) in hemodialysis patients. We studied the effect of a daily 12-week course of 1000 mg calcium and 800 U cholecalciferol on circulating 25 hydroxyvitamin D [25(OH)D], PTH, cytokines, osteoprotegerin (OPG), C-reactive protein (CRP), bone markers, lipid parameters and insulin levels in 47 healthy post-menopausal women. Thirty-nine women completed the study. A significant increase in 25(OH)D and a significant decrease in PTH were observed (p=0.0043 and p<0.0001, respectively). In addition, alkaline phosphatase, osteocalcin and, to a lesser extent, urinary free deoxypiridinoline (DPD) decreased significantly (p<0.0001, p=0.0002 and p=0.026, respectively). No change in circulating IL6, tumor necrosis factor a (TNFa), CRP, OPG, triglycerides, LDL- and HDL-cholesterol, and insulin levels was observed. Correlation studies in the 47 women enrolled in the study revealed inverse significant correlations between OPG on one side and body mass index, LDL-cholesterol, IL6, CRP and insulin levels on the other (p=0.002, p=0.002, p=0.004, p=0.023 and p=0.0001). Also, IL6 was significantly correlated with insulin levels (p=0.0005). In a multivariate model, both insulin and LDL-cholesterol were independently associated with OPG, while only insulin was independently associated with IL6. Our results showed no effect of a short-term calcium-vitamin D treatment on circulating cytokines, CRP, insulin levels and lipid parameters. This could be related to the low circulating cytokine concentrations in healthy subjects or to the short duration of treatment. The interesting association we found between OPG and some cardiovascular risk markers deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001, 22: 477–501.

    Article  PubMed  CAS  Google Scholar 

  2. McKenna MJ, Freaney R. Secondary hyperparathyroidism in the elderly: means to defining hypovitaminosis D. Osteoporos Int Suppl 1998, 8: S3–6.

    Article  CAS  Google Scholar 

  3. Sahota O, Masud T, San P, Hosking DJ. Vitamin D insufficiency increases bone turnover markers and enhances bone loss at the hip in patients with established vertebral osteoporosis. Clin Endocrinol (Oxf) 1999, 51: 217–21.

    Article  CAS  Google Scholar 

  4. Muller K, Bendtzen K. 1,25-Dihydroxyvitamin D3 as a natural regulator of human immune functions. J Investig Dermatol Symp Proc 1996, 1: 68–71.

    PubMed  CAS  Google Scholar 

  5. Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J 2001, 15: 2579–85.

    Article  PubMed  CAS  Google Scholar 

  6. Muller K, Rieneck K, Hansen MB, Bendtzen K. 1,25- Dihydroxyvitamin D3-mediated suppression of T lymphocyte functions and failure of T cell-activating cytokines to restore proliferation. Immunol Lett 1992, 34: 37–44.

    Article  PubMed  CAS  Google Scholar 

  7. Rigby WFC, Denome S, Fanger MW. Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. J Clin Invest 1987, 79: 1659–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Muller K, Diamant M, Bendtzen K. Inhibition of production and function of interleukin-6 by 1,25-dihydroxyvitamin D3. Immunol Lett 1991, 28: 115–20.

    Article  PubMed  CAS  Google Scholar 

  9. Muller K, Odein M, Bendtzen K. 1,25-dihydroxyvitamin D3 selectively reduces interleukin-2 levels and proliferation of human T cell lines in vitro. Immunol Lett 1993, 35: 177–82.

    Article  PubMed  CAS  Google Scholar 

  10. Willheim M, Thien R, Schrattbauer K, et al. Regulatory effects of 1a,25-dihydroxyvitamin D3 on the cytokine production of human peripheral blood lymphocytes. J Clin Endocrinol Metab 1999, 84: 3739–44.

    PubMed  CAS  Google Scholar 

  11. Bhalla AK, Amento EP, Clemens TL, Holick MF, Krane SM. Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J Clin Endocrinol Metab 1985, 57: 1308–10.

    Article  Google Scholar 

  12. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science 1983, 221: 1181–3.

    Article  PubMed  CAS  Google Scholar 

  13. Oelzner P, Franke S, Muller A, Hein G, Stein G. Relationship between soluble markers of immune activation and bone turnover in post-menopausal women with rheumatoid arthritis. Rheumatology (Oxford) 1999, 38: 841–7.

    Article  CAS  Google Scholar 

  14. Nyomba BL, Bouillon R, De Moor P. Influence of vitamin D status on insulin secretion and glucose tolerance in the rabbit. Endocrinology 1984, 115: 191–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kumar S, Davies M, Zakaria Y, et al. Improvement in glucose tolerance and ß-cell function in a patient with vitamin D deficiency during treatment with vitamin D. Postgrad Med J 1994, 70: 440–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Boucher BJ. Inadequate vitamin D status: does it contribute to the disorders comprising syndrome X? Br J Nutr 1998, 79: 315–27.

    Article  PubMed  CAS  Google Scholar 

  17. Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP. The pathophysiologic roles of interleukin-6 in human diseases. Ann Int Med 1998, 128: 127–37.

    Article  PubMed  CAS  Google Scholar 

  18. Papanicolaou DA, Vgontzas AN. Interleukin-6: The endocrine cytokine. J Clin Endocrinol Metab 2000, 85: 1331–3.

    Article  PubMed  CAS  Google Scholar 

  19. Rifas L. Bone and cytokines: beyond IL-1, IL-6 and TNF-a. Calcif Tissue Int 1999, 6: 1–7.

    Article  Google Scholar 

  20. Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000, 85: 3338–42.

    PubMed  CAS  Google Scholar 

  21. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101: 1767–72.

    Article  PubMed  CAS  Google Scholar 

  22. Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 1999, 106: 506–12.

    Article  PubMed  CAS  Google Scholar 

  23. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997, 89: 309–19.

    Article  PubMed  CAS  Google Scholar 

  24. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93: 165–76.

    Article  PubMed  CAS  Google Scholar 

  25. Browner WS, Lui LY, Cummings SR. Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J Clin Endocrinol Metab 2001, 86: 631–7.

    PubMed  CAS  Google Scholar 

  26. Katz A, Nambi SS, Mather K, et al. Quantitative Insulin Sensitivity Check Index. A sample method for assessing Insulin sensitivity. J Clin Endocrinol Metab 2000, 85: 2402–10.

    Article  PubMed  CAS  Google Scholar 

  27. Turk U, Akbulut M, Yildiz A, et al. Comparative effect of oral pulse and intravenous calcitriol treatment in hemodialysis patients: the effect on serum IL1 and IL6 and bone mineral density. Nephron 2002, 90: 188–94.

    Article  PubMed  Google Scholar 

  28. Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol 2002, 22: 549–53.

    Article  PubMed  CAS  Google Scholar 

  29. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998, 12: 1260–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Hofbauer LC, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein- 2 and cytokines. Biochem Biophys Res Commun 1998, 275: 776–81.

    Article  Google Scholar 

  31. Horwood NJ, Elliot J, Martin TJ, Gillespie MT. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 1998, 139: 4743–6.

    Article  PubMed  CAS  Google Scholar 

  32. Szulc P, Hofbauer C, Heufelder AE, Roth S, Delmas PD. Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab 2001, 86: 3162–5.

    PubMed  CAS  Google Scholar 

  33. Prestwood KM, Pannullo AM, Kenny AM, Pilbeam CC, Raisz LG. The effect of a short course of calcium and vitamin D on bone turnover in older women. Osteoporos Int 1996, 6: 314–9.

    Article  PubMed  CAS  Google Scholar 

  34. Kamel S, Brazier M, Rogez JC, et al. Different responses of free and peptide-bound cross-links to vitamin D and calcium supplementation in elderly women with vitamin D insufficiency. J Clin Endocrinol Metab 1996, 81: 3717–21.

    PubMed  CAS  Google Scholar 

  35. Reid IR, Mason B, Horne A, et al. Effects of a calcium supplementation on serum lipid concentrations in normal older women: a randomized controlled trial. Am J Med 2002, 102: 343–7.

    Article  Google Scholar 

  36. Kautzky-Willer A, Pacini G, Barnas U, et al. Intravenous calcitriol normalizes insulin sensitivity in uremic patients. Kidney Int 1995, 47: 200–6.

    Article  PubMed  CAS  Google Scholar 

  37. Huang Y, Ishizuka T, Miura A, et al. Effect of 1 alpha, 25-dihydroxyvitamin D3 and vitamin E on insulin-induced glucose uptake in rat adipocytes. Diabetes Res Clin Pract 2002, 55: 175–83.

    Article  PubMed  CAS  Google Scholar 

  38. Price PA, June HH, Buckley JR, Williamson MK. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arterioscler Thromb Vasc Biol 2001, 21: 1610–6.

    Article  PubMed  CAS  Google Scholar 

  39. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosing factor-alpha, in vivo. J Clin Endocrinol Metab 1997, 82: 4196–200.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Gannagé-Yared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gannagé-Yared, M.H., Azoury, M., Mansour, I. et al. Effects of a short-term calcium and vitamin D treatment on serum cytokines, bone markers, insulin and lipid concentrations in healthy post-menopausal women. J Endocrinol Invest 26, 748–753 (2003). https://doi.org/10.1007/BF03347358

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347358

Key-words

Navigation