Skip to main content
Log in

Peptide receptor therapies in neuroendocrine tumors

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Neuroendocrine tumors (NETs) are relatively rare tumors, mainly originating from the digestive system, able to produce bioactive amines and hormones. NETs tend to be slow growing and are often diagnosed when metastatic. The localization of a NETs and the assessment of the extent of disease are crucial for management. Commonly used diagnostic techniques include morphological imaging (ultrasound, computerized tomography, magnetic resonance), and functional imaging (somatostatin receptor scintigraphy, positron emission tomography techniques). Treatment is multidisciplinary and should be individualized according to the tumor type, burden, and symptoms. Therapeutic tools include surgery, interventional radiology, and medical treatments such as somatostatin analogues, interferon, chemotherapy, new targeted drugs and peptide receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogues. NETs usually over-express somatostatin receptors, thus enabling the therapeutic use of somatostatin analogues, one of the basic tools, able to reduce signs and symptoms of hormone hypersecretion, improve quality of life, and slow tumor growth. PRRT with somatostatin analogues 90Y-DOTATOC and 177Lu-DOTATATE has been explored in NETs for more than a decade. Present knowledge and clinical studies indicate that it is possible to deliver high-absorbed doses to tumors expressing sst2 receptors, with partial and complete objective responses in up to 30% of patients. Side effects, involving the kidney and the bone marrow, are mild if adequate renal protection is used. Moreover, a consistent survival benefit is reported. As NETs may also express cholecystokinin 2, bombesin, neuropeptide Y or vasoactive intestinal peptide receptors even simultaneously, the potential availability and biological stability of radio-analogues will improve the multireceptor targeting of NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearse AG. The cytochemistry and ultrastructure pf polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 1969, 17: 303–13.

    Article  PubMed  CAS  Google Scholar 

  2. Langley K. The neuroendocrine concept today. Ann N Y Acad Sci 1994, 733: 1–17.

    Article  PubMed  CAS  Google Scholar 

  3. Barakat MT, Meeran K, Bloom SR. Neuroendocrine tumours. Endocrine-related Cancer 2004, 11: 1–18. Surveillance, Epidemiology, and End Results (SEER) Program 2005 Public-use Data. National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistic Branch. National Cancer Institute, Bethesda, MD. April 2005.

    Article  PubMed  CAS  Google Scholar 

  4. Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008, 9: 61–72.

    Article  PubMed  CAS  Google Scholar 

  5. Kaltsas G, Rockall A, Papadogias D, Reznek R, Grossman AB. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol 2004, 151: 15–27.

    Article  PubMed  CAS  Google Scholar 

  6. Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med 2000, 41: 1704–13.

    PubMed  CAS  Google Scholar 

  7. Signore A, Procaccini E, Chianelli M, et al. SPECT imaging with 111In-octreotide for the localization of pancreatic insulinoma. Q J Nucl Med 1995, 39(Suppl. 1): 111–2.

    PubMed  CAS  Google Scholar 

  8. Jamar F, Barone R, Mathieu I, et al. 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487)-a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging 2003, 30: 510–8.

    Article  PubMed  CAS  Google Scholar 

  9. Orlefors H, Sundin A, Garske U, et al. Whole-body (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 2005, 90: 3392–400.

    Article  PubMed  CAS  Google Scholar 

  10. Pettinato C, Sarnelli A, Di Donna M, et al. 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2008, 35: 72–9.

    Article  PubMed  CAS  Google Scholar 

  11. Plöckinger U, Rindi G, Arnold R, et al; European Neuroendocrine Tumour Society. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology 2004, 80: 394–424.

    Article  PubMed  CAS  Google Scholar 

  12. Modlin IM, Latich I, Kidd M, Zikusoka M, Eick G. Therapeutic options for gastrointestinal carcinoids. Clin Gastroenterol Hepatol 2006, 4: 526–47.

    Article  PubMed  CAS  Google Scholar 

  13. Norton JA. Endocrine tumours of the gastrointestinal tract. Surgical treatment of neuroendocrine metastases. Best Pract Res Clin Gastroenterol 2005, 19: 577–83.

    Article  Google Scholar 

  14. Rea F, Rizzardi G, Zuin A, et al. Outcome and surgical strategy in bronchial carcinoid tumors: single institution experience with 252 patients. Eur J Cardiothorac Surg 2007, 31: 186–91.

    Article  PubMed  Google Scholar 

  15. O’Toole D, Ruszniewski P. Chemoembolization and other ablative therapies for liver metastases of gastrointestinal endocrine tumours. Best Pract Res Clin Gastroenterol 2005, 19: 585–94.

    Article  PubMed  CAS  Google Scholar 

  16. Mazzaglia PJ, Berber E, Siperstein AE. Radiofrequency thermal ablation of metastatic neuroendocrine tumors in the liver. Curr Treat Options Oncol 2007, 8: 322–30.

    Article  PubMed  Google Scholar 

  17. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol 2008, 190: 191–9.

    Article  PubMed  Google Scholar 

  18. O’Toole D, Hentic O, Corcos O, Ruszniewski P. Chemotherapy for gastro-enteropancreatic endocrine tumours. Neuroendocrinology 2004, 80(Suppl 1): 79–84.

    PubMed  Google Scholar 

  19. Plöckinger U, Wiedenmann B. Neuroendocrine tumors. Biotherapy. Best Pract Res Clin Endocrinol Metab 2007, 21: 145–62.

    Article  CAS  Google Scholar 

  20. Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 2003, 24: 28–47.

    Article  PubMed  CAS  Google Scholar 

  21. Arnold R, Müller H, Schade-Brittinger C, et al. Placebo-controlled double-blind, prospective, randomized study of the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group (abstract). J Clin Oncol 2009, 27 (Suppl): 15s.

    Article  Google Scholar 

  22. Fazio N, de Braud F, Delle Fave G, Oberg K. Interferon-alpha and somatostatin analog in patients with gastroenteropancreatic neuroendocrine carcinoma: single agent or combination? Ann Oncol 2007, 18: 13–9.

    Article  PubMed  CAS  Google Scholar 

  23. Yao JC, Hoff PM. Molecular targeted therapy for neuroendocrine tumors. Hematol Oncol Clin North Am 2007, 21: 575–81.

    Article  PubMed  Google Scholar 

  24. Gray JA, Roth BL. Cell biology. A last GASP for GPCRs? Science 2002, 297: 529–31.

    Article  PubMed  CAS  Google Scholar 

  25. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med 1996, 334: 246–54.

    Article  PubMed  CAS  Google Scholar 

  26. Signore A, Pozzilli C, Valente L, Mattei C, Forni L, Pozzilli P. Iodine 123 labelled somatostatin and study of its biokinetics following intravenous administration in man. J Endocrinol Invest 1986, 9: 297.

    Google Scholar 

  27. Reubi JC, Schär JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000, 27: 273–82.

    Article  PubMed  CAS  Google Scholar 

  28. Hejna M, Schmidinger M, Raderer M. The clinical role of somatostatin analogues as antineoplastic agents: much ado about nothing? Ann Oncol 2002, 13: 653–68.

    Article  PubMed  CAS  Google Scholar 

  29. Di Bartolomeo M, Bajetta E, Buzzoni R, et al. Clinical efficacy of octreotide in the treatment of metastatic neuroendocrine tumors. A study by the Italian Trials in Medical Oncology Group. Cancer 1996, 77: 402–8.

    Google Scholar 

  30. Faiss S, Räth U, Mansmann U, et al. Ultra-high-dose lanreotide treatment in patients with metastatic neuroendocrine gastroenteropancreatic tumors. Digestion 1999, 60: 469–76.

    Article  PubMed  CAS  Google Scholar 

  31. Eriksson B, Renstrup J, Imam H, Oberg K. High-dose treatment with lanreotide of patients with advanced neuroendocrine gastrointestinal tumors: clinical and biological effects. Ann Oncol 1997, 8: 1041–4.

    Article  PubMed  CAS  Google Scholar 

  32. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]-octreotide and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993, 20: 716–31.

    Article  PubMed  CAS  Google Scholar 

  33. Valkema R, De Jong M, Bakker WH, et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]-octreotide: the Rotterdam experience. Semin Nucl Med 2002, 32: 110–22.

    Article  PubMed  Google Scholar 

  34. de Jong M, Bakker WH, Breeman WA, et al. Pre-clinical comparison of [DTPA0, Tyr3]octreotide and [DOTA0, D-Phe1, Tyr3]octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Int J Cancer 1998, 75: 406–11.

    Article  PubMed  Google Scholar 

  35. Bodei L, Kassis AI, Adelstein SJ, Mariani G. Radionuclide therapy with iodine-125 and other auger-electron-emitting radionuclides: experimental models and clinical applications. Cancer Biother Radiopharm 2003, 18: 861–77.

    Article  PubMed  CAS  Google Scholar 

  36. Cescato R, Schulz S, Waser B, et al. Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J Nucl Med 2006, 47: 502–11.

    PubMed  CAS  Google Scholar 

  37. Reubi JC, Maecke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 2005, 46: 67S–75S.

    PubMed  CAS  Google Scholar 

  38. de Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging 2003, 30: 463–9.

    Google Scholar 

  39. Virgolini I, Traub T, Novotny C, et al. New trends in peptide receptor radioligands. Q J Nucl Med 2001, 45: 153–9.

    PubMed  CAS  Google Scholar 

  40. Lantry LE, Cappelletti E, Maddalena ME, et al. 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 2006, 47: 1144–52.

    PubMed  CAS  Google Scholar 

  41. Bodei, M. Ferrari, A. Nunn, et al. 177Lu-AMBA bombesin analogue in hormone refractory prostate cancer patients: a phase Iescalation study with single-cycle administrations. Eur J Nucl Med Mol Imaging 2007, 34(Suppl 2): S221.

    Google Scholar 

  42. Chini B, Chinol M, Cassoni P, et al. Improved radiotracing of oxytocin receptor-expressing tumours using the new [111In]-DOTA-Lys8-deamino-vasotocin analogue. Br J Cancer 2003, 89: 930–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Larisch R, Schulte KW, Vosberg H, Ruzicka T, Müller-Gärtner HW. Differential accumulation of iodine-123-iodobenzamide in melanotic and amelanotic melanoma metastases in vivo. J Nucl Med 1998, 39: 996–1001.

    PubMed  CAS  Google Scholar 

  44. Bodei L, Hofland LJ, Ferone D, et al. In vivo and in vitro detection of dopamine D2 receptors in uveal melanomas. Cancer Biother Radiopharm 2003, 18: 895–902.

    Article  PubMed  CAS  Google Scholar 

  45. Pivonello R, Ferone D, de Herder WW, et al. Dopamine receptor expression and function in corticotroph ectopic tumors. J Clin Endocrinol Metab 2007, 92: 65–9.

    Article  PubMed  CAS  Google Scholar 

  46. Pivonello R, Ferone D, Lamberts SW, Colao A. Cabergoline plus lanreotide for ectopic Cushing’s syndrome. N Engl J Med 2005, 352: 2457–8.

    Article  PubMed  CAS  Google Scholar 

  47. Jaquet P, Gunz G, Saveanu A, et al. Efficacy of chimeric molecules directed towards multiple somatostatin and dopamine receptors on inhibition of GH and prolactin secretion from GH-secreting pituitary adenomas classified as partially responsive to somatostatin analog therapy. Eur J Endocrinol 2005, 153: 135–41.

    Article  PubMed  CAS  Google Scholar 

  48. Ferone D. Arvigo M, Semino C, et al. Somatostatin and dopamine receptor expression in lung carcinoma cells and effects of chimeric somatostatin-dopamine molecules on cell proliferation. Am J Physiol Endocrinol Metab 2005, 289: E1044–50.

    Article  PubMed  CAS  Google Scholar 

  49. Jaquet P, Gunz G, Saveanu A, et al. BIM-23A760, a chimeric molecule directed towards somatostatin and dopamine receptors, vs universal somatostatin. J Endocrinol Invest 2005, 28 (11 Suppl International): 21–7.

    PubMed  CAS  Google Scholar 

  50. van der Hoek J, Hofland LJ, Lamberts SW. Novel subtype specific and universal somatostatin analogues: clinical potential and pitfalls. Curr Pharm Des 2005, 11: 1573–92.

    Article  PubMed  Google Scholar 

  51. Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 2006 Oct 31, 103: 16436–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Volante M, Brizzi MP, Faggiano A, et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 2007, 20: 1172–82.

    Article  PubMed  CAS  Google Scholar 

  53. Fertil B, Malaise EP. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiation Oncol Biol Phys 1985, 11: 1699–707.

    Article  CAS  Google Scholar 

  54. Cremonesi M, Ferrari M, Zoboli S, et al. Biokinetics and dosimetry in patients administered with 111In-DOTA-Tyr3-octreotide: implications internal radiotherapy with 90Y-DOTATOC. Eur J Nucl Med 1999, 26: 877–86.

    Article  PubMed  CAS  Google Scholar 

  55. Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 2005, 23: 2754–62.

    Article  PubMed  CAS  Google Scholar 

  56. de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 2005, 46(Suppl 1): 13S–7S.

    PubMed  Google Scholar 

  57. Bernard BF, Krenning EP, Breeman WA, et al. D-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med 1997, 38: 1929–33.

    PubMed  CAS  Google Scholar 

  58. de Jong M, Krenning E. New advances in peptide receptor radionuclide therapy. J Nucl Med 2002, 43: 617–20.

    PubMed  Google Scholar 

  59. Brans B, Bodei L, Giammarile F, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 2007, 34: 772–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Bodei L, Cremonesi M, Grana, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-Octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004, 7: 1038–46.

    Google Scholar 

  61. Valkema R, Pauwels SA, Kvols LK, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med 2005, 46: 83S–91S.

    PubMed  CAS  Google Scholar 

  62. National Council on Radiation Protection and Measurements. Misadministration of radioactive material in medicine-scientific background. Bethesda, MD 1991: 27.

  63. Cassady JR. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys 1995, 31: 1249–56.

    Article  PubMed  CAS  Google Scholar 

  64. Barone R, Borson-Chazot F, Valkema R, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005, 46(Suppl 1): 99S–106S.

    PubMed  CAS  Google Scholar 

  65. Dale R, Carabe-Fernandez A. The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother Radiopharm 2005, 20: 47–51.

    Article  PubMed  CAS  Google Scholar 

  66. Dale R. Use of the linear-quadratic radiobiological model for quantifying kidney response in targeted radiotherapy. Cancer Biother Radiopharm 2004, 19: 363–70.

    Article  PubMed  Google Scholar 

  67. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, et al. Overview of results of peptide receptor radionuclide therapy with 3 different radiolabeled somatostatin analogues. J Nucl Med 2005, 46: 62S–6S.

    PubMed  CAS  Google Scholar 

  68. Davì MV, Bodei L, Francia G, et al. Carcinoid crisis induced by receptor radionuclide therapy with 90Y-DOTATOC in a case of liver metastases from bronchial neuroendocrine tumor (atypical carcinoid). J Endocrinol Invest 2006, 29: 563–7.

    Article  PubMed  Google Scholar 

  69. Anthony LB, Woltering EA, Espenan GD, Cronin MD, Maloney TJ, McCarthy KE. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med 2002, 32: 123–32.

    Article  PubMed  Google Scholar 

  70. Otte A, Herrmann R, Heppeler, et al. Yttrium-90 DOTATOC: first clinical results. EurJ Nucl Med 1999, 26: 1439–47.

    Article  CAS  Google Scholar 

  71. Waldherr C, Pless M, Maecke HR, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 2002, 43: 610–6.

    PubMed  CAS  Google Scholar 

  72. Chinol M, Bodei L, Cremonesi M, Paganelli G. Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group. Semin Nucl Med 2002, 32: 141–7.

    Article  PubMed  Google Scholar 

  73. de Jong M, Valkema R, Jamar F, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med 2002, 32: 133–40.

    Article  PubMed  Google Scholar 

  74. Bodei L, Handkiewicz-Junak D, Grana C, et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 2004, 19: 65–71.

    Article  PubMed  CAS  Google Scholar 

  75. Agazzi A, Rocca P, Laszlo D, et al. Is CD20 the only target available for radionuclide therapy in lymphoproliferative disorders? Eur J Haematol 2005, 74: 450–1.

    Article  PubMed  CAS  Google Scholar 

  76. Valkema R, Pauwels S, Kvols LK, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 2006, 36: 147–56.

    Article  PubMed  Google Scholar 

  77. de Jong M, Bernard BF, De Bruin E, et al. Internalization of radiolabelled [DTPA0]octreotide and [DOTA0,Tyr3]octreotide: peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl Med Commun. 1998 Mar, 19: 283–8.

    Article  PubMed  Google Scholar 

  78. Lewis JS, Wang M, Laforest R, et al. Toxicity and dosimetry of (177)Lu-DOTA-Y3-octreotate in a rat model. Int J Cancer 2001, 94: 873–7.

    Article  PubMed  CAS  Google Scholar 

  79. Kwekkeboom DJ, Bakker WH, Kam BL, et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA(0), Tyr3]octreotate. Eur J Nucl Med Mol Imaging 2003, 30: 417–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Teunissen JJ, Kwekkeboom DJ, Krenning EP. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0,Tyr3]octreotate. J Clin Oncol 2004, 1, 22: 2724–9.

    Article  PubMed  CAS  Google Scholar 

  81. van Essen M, Krenning EP, Bakker WH, de Herder WW, van Aken MO, Kwekkeboom DJ. Peptide receptor radionuclide therapy with 177Lu-octreotate in patients with foregut carcinoid tumours of bronchial, gastric and thymic origin. Eur J Nucl Med Mol Imaging 2007, 34: 1219–27.

    Article  PubMed  CAS  Google Scholar 

  82. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 2008, 26: 2124–30.

    Article  PubMed  CAS  Google Scholar 

  83. Esser JP, Krenning EP, Teunissen JJ, et al. Comparison of [(177)Lu-DOTA(0),Tyr(3)]octreotate and [(177)Lu-DOTA(0),Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging 2006, 33: 1346–51.

    Article  PubMed  CAS  Google Scholar 

  84. van Essen M, Krenning EP, Kam BL, de Herder WW, van Aken MO, Kwekkeboom DJ. Report on short-term side effects of treatments with (177)Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2008, 35: 743–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Reubi JC. Peptide receptor expression in GEP-NET. Virchows Arch 2007, 451(Suppl 1): S47–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bodei MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodei, L., Ferone, D., Grana, C.M. et al. Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest 32, 360–369 (2009). https://doi.org/10.1007/BF03345728

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345728

Key-words

Navigation