Skip to main content
Log in

Polymorphisms of steroid 5- α- reductase type I (SRD5A1) gene are associated to peripheral arterial disease

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Although animal studies support the hypothesis that androgenic biological actions may affect experimental atherosclerosis progression, evidence for a relationship between androgen effects and peripheral arterial disease (PAD), a common clinical form of atherosclerosis, is weak or contradictory. Testosterone, the main androgen hormone, is converted in a 5α-reduced form by enzymatic activities in the target cells and some specific actions are mediated by such metabolites. Steroid 5-α reductase isoenzymes (SRD5A1 and SRD5A2) catalyze the conversion to the bioactive potent androgen dihydrotestosterone and other reduced metabolites and represent relevant regulators of local hormonal actions. In the present study we tested for the association of selected single nucleotide polymorphisms (SNP) of SRD5A1 and SRD5A2 with symptomatic PAD patients. Two different SNP in the SRD5A1 were significantly associated which the PAD phenotype (p<0.03, odds ratio 1.73), while no association was found between PAD phenotypes and SRD5A2. Since the examined SRDA1 gene variant was previously associated with a low enzymatic activity, we suggest that a decreased local enzymatic conversion of testosterone may contribute to PAD genetic susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker L, Meldrum KK, Wang M, et al. The role of estrogen in cardiovascular disease. J Surg Res 2003, 115: 325–44.

    Article  PubMed  CAS  Google Scholar 

  2. Bhasin S. Effects of testosterone administration on fat distribution, insulin sensitivity, and atherosclerosis progression. Clin Infect Dis 2003, 37 (Suppl 2): S142–9.

    Article  PubMed  CAS  Google Scholar 

  3. Dougherty RH, Rohrer JL, Hayden D, Rubin SD, Leder BZ. Effect of aromatase inhibition on lipids and inflammatory markers of cardiovascular disease in elderly men with low testosterone levels. Clin Endocrinol (Oxf) 2005, 62: 228–35.

    Article  CAS  Google Scholar 

  4. Dunajska K, Milewicz A, Szymczak J, et al. Evaluation of sex hormone levels and some metabolic factors in men with coronary atherosclerosis. Aging Male 2004, 7: 197–204.

    Article  PubMed  CAS  Google Scholar 

  5. Eckardstein A, Wu FC. Testosterone and atherosclerosis. Growth Horm IGF Res, 13 (Suppl A): S72–84.

  6. Jones RD, Hugh Jones T, Channer KS. The influence of testosterone upon vascular reactivity. Eur J Endocrinol 2004, 151: 29–37.

    Article  PubMed  CAS  Google Scholar 

  7. Jones RD, Malkin CJ, Channer KS, Jones TH. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: further supportive data. J Clin Endocrinol Metab 2003, 88: 1403–4.

    Article  PubMed  CAS  Google Scholar 

  8. Jones RD, Nettleship JE, Kapoor D, Jones HT, Channer KS. Testosterone and atherosclerosis in aging men: purported association and clinical implications. Am J Cardiovasc Drugs 2005, 5: 141–54.

    Article  PubMed  CAS  Google Scholar 

  9. Kajinami K, Takeda K, Takekoshi N, et al. Imbalance of sex hormone levels in men with coronary artery disease. Coron Artery Dis 2004, 15: 199–203.

    PubMed  Google Scholar 

  10. Littleton-Kearney M, Hum PD. Testosterone as a modulator of vascular behavior. Biol Res Nurs 2004, 5: 276–85.

    Article  PubMed  Google Scholar 

  11. Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocr Rev 2003, 24: 313–40.

    Article  PubMed  CAS  Google Scholar 

  12. Malkin CJ, Pugh PJ, Jones RD, Jones TH, Channer KS. Testosterone as a protective factor against atherosclerosis—immunomodulation and influence upon plaque development and stability. J Endocrinol 2003, 178: 373–80.

    Article  PubMed  CAS  Google Scholar 

  13. Malkin CJ, Pugh PJ, Morris PD, et al. Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart 2004, 90: 871–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Phillips GB. Is atherosclerotic cardiovascular disease an endocrinological disorder? The estrogen-androgen paradox. J Clin Endocrinol Metab 2005, 90: 2708–11.

    Article  PubMed  CAS  Google Scholar 

  15. Svartberg J, Jenssen T, Sundsfjord J, Jorde R. The associations of endogenous testosterone and sex hormone-binding globulin with glycosylated hemoglobin levels, in community dwelling men. The Tromsø Study. Diabetes Metab 2004, 30: 29–34.

    Article  CAS  Google Scholar 

  16. Zitzmann M, Brune M, Nieschlag E. Vascular reactivity in hypogonadal men is reduced by androgen substitution. J Clin Endocrinol Metab 2002, 87: 5030–7.

    Article  PubMed  CAS  Google Scholar 

  17. Wu FCW, Von Eckardstein A. Androgens and coronary artery disease. Endocr Rev 2003, 24: 183–217.

    Article  PubMed  CAS  Google Scholar 

  18. Tsang S, Liu J, Wong TM. Testosterone and cardioprotection against myocardial ischemia. Cardiovasc Hematol Disord Drug Targets 2007, 7: 119–25.

    Article  PubMed  CAS  Google Scholar 

  19. Murabito JM, D’Agostino RB, Silbershatz H, Wilson WF. Intermittent claudication. A risk profile from The Framingham Heart Study. Circulation 1997, 96: 44–9.

    Article  PubMed  CAS  Google Scholar 

  20. Brevetti G, Bucur R, Balbarini A, et al. Women and peripheral arterial disease: same disease, different issues. J Cardiovasc Med (Hagerstown) 2008, 9: 382–8.

    Article  Google Scholar 

  21. Collins TC, Suarez-Almazor M, Bush RL, Petersen NJ. Gender and peripheral arterial disease. J Am Board Fam Med 2006, 19: 132–40.

    Article  PubMed  Google Scholar 

  22. Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: The Rotterdam Study. Arterioscler Thromb Vasc Biol 1998, 18: 185–92.

    Article  PubMed  CAS  Google Scholar 

  23. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation 2004, 110: 738–43.

    Article  PubMed  Google Scholar 

  24. Sigvant B, Wiberg-Hedman K, Bergqvist D, et al. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. J Vasc Surg 2007, 45: 1185–91.

    Article  PubMed  Google Scholar 

  25. Price JF, Lee AJ, Fowkes FG. Steroid sex hormones and peripheral arterial disease in the Edinburgh Artery Study. Steroids 1997, 62: 789–94.

    Article  PubMed  CAS  Google Scholar 

  26. Hak AE, Witteman JC, de Jong FH, Geerlings MI, Hofman A, Pols HA. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab 2002, 87: 3632–9.

    Article  PubMed  CAS  Google Scholar 

  27. Frye CA. Some rewarding effects of androgens might be mediated by actions of its 5apha-reduced metabolite 3-alpha-androstanediol. Pharmacol Biochem Behav 2007, 86: 354–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Janne OA, Palvimo JJ, Kallio P, Mehto M. Androgen receptor and mechanism of androgen action. Ann Med 1993, 25: 83–9.

    Article  PubMed  CAS  Google Scholar 

  29. Lookingbill DP, Demers LM, Wang C, Leung A, Rittmaster RS, Santen RJ. Clinical and biochemical parameters of androgen action in normal healthy Caucasian versus Chinese subjects. J Clin Endocrinol Metab 1991, 72: 1242–8.

    Article  PubMed  CAS  Google Scholar 

  30. Rahman F, Christian HC. Non-classical actions of testosterone: an update. Trends Endocrinol Metab 2007, 18: 371–8.

    Article  PubMed  CAS  Google Scholar 

  31. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: Binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid binding globulin in human plasma. J Clin Endocrinol Metab 1981, 53: 58–68.

    Article  PubMed  CAS  Google Scholar 

  32. Ellis JA, Stebbing M, Harrap SB. Genetic analysis of male pattern baldness and the 5alpha-reductase genes. J Invest Dermatol 1998, 110: 849–53.

    Article  PubMed  CAS  Google Scholar 

  33. Ellis JA, Panagiotopoulos S, Akdeniz A, Jerums G, Harrap SB. Androgenic correlates of genetic variation in the gene encoding 5alpha-reductase type 1. J Hum Genet 2005, 50: 534–7.

    Article  PubMed  CAS  Google Scholar 

  34. Russell DW, Wilson JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem 1994, 63: 25–61.

    Article  PubMed  CAS  Google Scholar 

  35. Pagano M, Gauvreau K. Principles of Biostatistics.2nd Ed. California: Brooks/Cole, 2000.

    Google Scholar 

  36. Jenkins EP, Hsieh CL, Milatovich A, et al. Characterization and chromosomal mapping of a human steroid 5 alpha-reductase gene and pseudogene and mapping of the mouse homologue. Genomics 1991, 11: 1102–12.

    Article  PubMed  CAS  Google Scholar 

  37. Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnell JD, Russell DW. Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. Clin Invest 1993, 92: 903–10.

    Article  CAS  Google Scholar 

  38. Andersson S, Berman DM, Jenkins EP, Russell DW. Deletion of steroid 5-alpha-reductase 2 gene in male pseudohermaphroditism. Nature 1991, 354: 159–61.

    Article  PubMed  CAS  Google Scholar 

  39. Andersson S, Russell DW. Structural and biochemical properties of cloned and expressed human and rat steroid 5-alpha-reductases. Proc Natl Acad Sci U S A 1990, 87: 3640–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Normington K, Russell DW. Tissue distribution and kinetic characteristics of rat steroid 5 alpha-reductase isozymes. Evidence for distinct physiological functions. J Biol Chem 1992: 267: 19548–54.

    PubMed  CAS  Google Scholar 

  41. Makridakis N, Ross RK, Pike MC, et al. A prevalent missense substitution that modulates activity of prostatic steroid 5 alpha -reductase. Cancer Res 1997, 57: 1020–2.

    PubMed  CAS  Google Scholar 

  42. Jaffe JM, Malkowicz SB, Walker AH, et al. Association of SRD5A2 genotype and pathological characteristics of prostate tumors. Cancer Res 2000, 60: 1626–30.

    PubMed  CAS  Google Scholar 

  43. Allen NE, Forrest MS, Key TJ. The association between poly-morphisms in the CYP17 and 5alpha-reductase (SRD5A2) genes and serum androgen concentrations in men. Cancer Epidemiol Biomarkers Prev 2001, 10: 185–9.

    PubMed  CAS  Google Scholar 

  44. Santner SJ, Albertson B, Zhang GY, et al. Comparative rates of androgen production and metabolism in Caucasian and Chinese subjects. J Clin Endocrinol Metab 1998, 83: 2104–9.

    PubMed  CAS  Google Scholar 

  45. Kullo IJ, Turner ST, Kardia SL, Mosley TH Jr, Boerwinkle E, de Andrade M. A genome-wide linkage scan for ankle-brachial index in African American and non-Hispanic white subjects participating in the GENOA study. Atherosclerosis 2006, 187: 433–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Signorelli MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Signorelli, S.S., Barresi, V., Musso, N. et al. Polymorphisms of steroid 5- α- reductase type I (SRD5A1) gene are associated to peripheral arterial disease. J Endocrinol Invest 31, 1092–1097 (2008). https://doi.org/10.1007/BF03345658

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345658

Keywords

Navigation