Skip to main content
Log in

Effects of chronic retinoid administration on pituitary function

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

It has been reported that retinoids may affect hypothalamic-pituitary-thyroid axis, causing central hypothyroidism. In the present study, we evaluated pituitary function in 11 male psoriatic patients at baseline and after 1 and 3 months of treatment with acitretin (all-trans retinoic acid, 35 mg/day). Serum LH, FSH, testosterone, cortisol, GH and IGF-I levels were not affected by the treatment. By contrast, we observed a significant decrease in TSH levels (from 0.92±0.3 to 0.80±0.3 mU/l, p<0.05) at 1 month, that reverted to baseline after 3 months. No change in free T4 (FT4) levels occurred, while free T3 (FT3) levels were reduced at 1 and 3 months (from 6.7±0.5 to 6.2±0.3 and 6.1±0.6 pmol/l; p<0.05, respectively). Moreover, acitretin treatment induced a significant reduction of PRL levels after 3 months (from 182±70 to 150±56 mU/l, p<0.05). During treatment, no change in TSH and PRL response either to TRH or dopamine infusion was observed. In conclusion, we demonstrated that treatment with low dose of acitretin induced a series of hormonal modifications that, in addition to a mild and transient reduction of TSH levels, included a persistent reduction of FT3, probably due to changes in thyroid hormone metabolism, and a decrease in PRL levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gudas LJ, Sporn MB, Roberts AB. Cellular biology and biochemistry of retinoids. In: Sporn MB, Roberts AB, Goodman DS eds. The Retinoids. New York, NY: Raven Press. 1994, 443–520.

    Google Scholar 

  2. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995, 83: 841–50.

    Article  PubMed  CAS  Google Scholar 

  3. Blumberg B, Evans RM. Orphan nuclear receptors — new ligands and possibilities. Genes Dev 1998, 12: 3144–55.

    Google Scholar 

  4. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev 2001, 81: 1269–304.

    PubMed  CAS  Google Scholar 

  5. Altucci L, Wilhelm E, Gronemeyer H. Leukemia: beneficial actions of retinoids and rexinoids. Int J Biochem Cell Biol 2004, 36: 178–82.

    Article  PubMed  CAS  Google Scholar 

  6. Ohno R, Asou N, Ohnishi K. Treatment of acute promyelocytic leukaemia: strategy toward further increase of cure rate. Leukemia 2003, 17: 1454–63.

    Article  PubMed  CAS  Google Scholar 

  7. Orfanos CE. Treatment of psoriasis with retinoids: present status. Cutis 1999, 64: 347–53.

    PubMed  CAS  Google Scholar 

  8. Magis NL, Blummel JJ, Kerkhof PC, Gerritsen RN. The treatment of psoriasis with etretinate and acitretin: a follow-up of actual use. Eur J Dermatol 2000, 10: 517–21.

    PubMed  CAS  Google Scholar 

  9. Ling MR. Acitretin: optimal dosing strategies. J Am Acad Dermatol 1999, 41: S13–7.

    Article  PubMed  CAS  Google Scholar 

  10. Sherman SI, Gopal J, Haugen BR, et al. Central hypothyroidism associated with retinoid X receptor-selective ligands. N Engl J Med 1999, 340: 1075–9.

    Article  PubMed  CAS  Google Scholar 

  11. Coya R, Carro Mallo F, Dieguez C. Retinoic acid inhibits in vivo thyroid-stimulating hormone secretion. Life Sci 1997, 60: PL247–50.

    Article  CAS  Google Scholar 

  12. Macchia PE, Jiang P, Yuan YD, et al. RXR receptor agonist suppression of thyroid function: central effects in the absence of thyroid hormone receptor. Am J Physiol Endocrinol Metab 2002, 283: E326–31.

    PubMed  CAS  Google Scholar 

  13. Breen JJ, Matsuura T, Ross AC, Gurr JA. Regulation of thyroid- stimulating hormone β-subunit and growth hormone messenger ribonucleic acid levels in the rat: effect of vitamin A status. Endocrinology 1995, 136: 543–9.

    PubMed  CAS  Google Scholar 

  14. Haugen BR, Brown NS, Wood WM, Gordon DF, Ridgway EC. The Thyrotrope-restricted isoform of the Retinoid-X Receptor- γ1 mediates 9-cis-Retinoic Acid suppression of thyrotropin- β promoter activity. Mol Endocrinol 1997, 11: 481–9.

    PubMed  CAS  Google Scholar 

  15. Samad TA, Krezel W, Chambon P, Borrelli E. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor- retinoid X receptor family. Proct Nal Acad Sci USA 1997, 94: 14349–54.

    Article  CAS  Google Scholar 

  16. Sugawara A, Yen Chin WW. 9-cis retinoic acid regulation of rat growth hormone gene expression: potential roles of multiple nuclear hormone receptors. Endocrinology 1994, 135: 1956–62.

    PubMed  CAS  Google Scholar 

  17. Guibourdenche J, Djakoure C, Porquet D, et al. Retinoic acid stimulates growth hormone synthesis in human somatotropic adenoma cells: characterization of its nuclear receptors. J Cell Biochem 1997, 65: 25–31.

    Article  PubMed  CAS  Google Scholar 

  18. Paez-Pereda M, Kovalovsky D, Hopfner U, et al. Retinoic acid prevents experimental Cushing syndrome. J Clin Invest 2001, 108: 1123–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. L. Naldi and C.E.M. Griffiths. Traditional therapies in the management of moderate to severe chronic plaque psoriasis: An assessment of the benefits and risks. Br J Dermatol 2005, 152: 597–615.

    Article  PubMed  CAS  Google Scholar 

  20. Schmutzler C, Hoang-Vu, Ruger B, Kohrle J. Human thyroid carcinoma cell lines show different retinoic acid receptors and retinoid responses. Eur J Endocrinol 2004, 150: 547–56.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia-Solis P, Aceves C. 5’-Deiodinase in two breast cancer cell lines: effect of triiodothyronine, isoproterenol and retinoids. Mol Cell Endocrinol 2003, 201: 25–31.

    Article  PubMed  CAS  Google Scholar 

  22. Castillo AI, Sanchez-Martinez R, Moreno JL, Palacios D, Aranda A. A permissive retinoid X receptor/thyroid hormone receptor heterodimer allows stimulation of prolactin gene transcription by thyroid hormone and 9-cis-retinoic acid. Mol Cell Biol 2004, 24: 502–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Pernasetti F, Caccavelli L, van de Weerdt C, Martial JA Muller M. Thyroid hormone inhibits the human prolactin gene promoter by interfering with activating protein-1 and estrogen stimulations. Mol Endocrinol 1997, 11: 986–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angioni, A.R., Lania, A., Cattaneo, A. et al. Effects of chronic retinoid administration on pituitary function. J Endocrinol Invest 28, 961–964 (2005). https://doi.org/10.1007/BF03345332

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345332

Keywords

Navigation