Skip to main content
Log in

Recent developments in Graves’ ophthalmopathy imaging

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Orbital ultrasound, computed tomography, and magnetic resonance are commonly used as imaging techniques to demonstrate pathological changes in ocular adnexa of patients with Graves’ ophthalmopathy. Low cost, short time of investigation, and lack of radiation characterize ultrasound. Nevertheless, a clear differentiation regarding disease activity is not possible, nor is the evaluation of orbital tissue precise enough. Short investigation time, precise imaging of the orbital apex and moderate costs are advantages of tomography. This method delivers a significant radiation dose to the lens, which if repeated constitutes a risk for cataract development. For this reason, magnetic resonance imaging is preferable, particularly if repeated scans are required to assess response to treatment. Precise tissue differentiation and lack of ionizing radiation uniquely suit magnetic resonance for eye studies. Although sensitive in demonstrating interstitial edema within the rectos muscles in active disease, as well as providing a good predictive value with respect to immunosuppressive therapy, quantitative magnetic resonance imaging is an expensive method and is non-specific for the orbital changes in ophthalmopathy. Because of a favorable target to background ratio, octreoscan carries a high sensitivity and may be regarded as a semi-objective tool in the evaluation of patients with Graves’ ophthalmopathy, both at initial stages as well as during treatment. A positive orbital octreoscan indicates a clinically active disease in which immunosuppressive treatment might be of therapeutic benefit. However, it is an expensive method with a non-negligible radiation burden. Also, it is neither specific nor does it offer detailed orbital imaging. In summary, in unclear cases of proptosis or recently developed diplopia, prior to orbital decompression surgery, or if imaging is needed in subjects with ophthalmopathy, magnetic resonance actually is the imaging method of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartalena L, Pinchera A, Marcocci C. Management of Graves’ ophthalmopathy: reality and perspectives. Endo Rev 2000, 21: 168–99.

    CAS  Google Scholar 

  2. Weetman AP, Wiersinga WM. Current management of thyroid- associated ophthalmopathy in Europe. Results of an international survey. Clin Endocrinol (Oxf) 1998, 49: 21–8

    Article  CAS  Google Scholar 

  3. Kahaly GJ. New imaging procedures in thyroid-associated ophthalmopathy. Orbit 1996, 15: 165–75.

    Article  Google Scholar 

  4. Müller-Forell W, Pitz S, Mann W, Kahaly GJ. Neuroradiological diagnosis of thyroid-associated orbitopathy. Exp Clin Endocrinol Diab 1999, 107: 177–83.

    Article  Google Scholar 

  5. Trokel L, Jacobiec FA. Correlation of CT scanning and pathologic features of opthalmic Graves’ disease. Ophthalmology 1981, 88: 553–64.

    Article  PubMed  CAS  Google Scholar 

  6. Neigel JM, Rootman J, Belkin RI, et al. Dysthyroid optic neuropathy. Ophthalmology 1988, 95 1515–21.

    Article  PubMed  CAS  Google Scholar 

  7. Nugent RA, Belkin RI, Neigel JM, et al. Graves’ orbitopathy: correlation of CT and clinical findings. Radiology 1990, 177: 675–82.

    PubMed  CAS  Google Scholar 

  8. Forbes G, Gorman CA, Gehring D, Baker HL Jr. Computer analysis of orbital fat and muscle volumes in Graves’ophthalmopathy. Am J Neuroradiol 1983, 4: 737–42.

    PubMed  CAS  Google Scholar 

  9. Forbes G, Gehring DG, Gorman CA, Brennan MD, Jackson IT. Volume measurements of normal orbital structures by computed tomographic analysis. Am J Neuroradiol 1985, 6: 419–24.

    Google Scholar 

  10. Forbes G, Gorman CA, Brennan MD. Ophthalmopathy of Graves’ disease: Computerized volume measurements of orbital fat and muscle. Am J Neuroradiol 1986, 7: 651–6.

    PubMed  CAS  Google Scholar 

  11. Enzmann DR, Donaldson SS, Kriss JP. Appearance of Graves’disease on orbital computed tomography. J Computed Ass Tomography 1979, 3: 815–9.

    Article  CAS  Google Scholar 

  12. Yoshikawa K, Higashide T, Nakase Y. Role of rectus muscle enlargement in clinical profile of dysthyroid ophthalmopathy. Jap J Ophthalmol 1991, 35: 175–81.

    CAS  Google Scholar 

  13. Barret L, Glatt HJ, Burde RM, Gado MH. Optic nerve dysfunction in thyroid eye disease: CT. Radiology 1988, 167: 503–8.

    Google Scholar 

  14. Feldon SE, Lee C, Muramatsu S, Weiner J. Quantitative computer tomography of Graves’ophthalmopathy. Arch Ophthalmol 1985, 103: 213–5.

    Article  PubMed  CAS  Google Scholar 

  15. Hallin ES, Feldon SE. Graves’ ophthalmopathy: II. Correlation of clinical signs with measures derived from computed tomography. Brit J Ophthalmol 1988, 72, 678–82.

    Article  CAS  Google Scholar 

  16. Just M, Kahaly GJ, Higer HP, et al. Graves’ ophthalmopathy: role of MR imaging in radiation therapy. Radiology 1991, 179: 187–90.

    PubMed  CAS  Google Scholar 

  17. Hiromatsu Y, Kojima K, Ishisaka N, Tanaka K, Sato M, Nonaka K. Role of magnetic resonance imaging in thyroid-associated ophthalmopathy: Its predictive value for therapeutic outcome of immunosuppressive therapy. Thyroid 1992, 2: 299–305.

    Article  PubMed  CAS  Google Scholar 

  18. Nianiaris N, Hurwitz JJ, Chen JC, Wortzman G. Correlation between computed tomography and magnetic resonance imaging in Graves’orbitopathy. Can J Opthalmol 1994, 29: 9–12

    CAS  Google Scholar 

  19. Nishikawa M, Yoshimura M, Toyoda N, Masaki H, Yonemoto T, Gondou A. Correlation of orbital muscle changes evaluated by magnetic resonance imaging and thyroid stimulating antibody in patients with Graves’ophthalmopathy. Acta Endocrinol (Copenh) 1993, 129: 213–9.

    CAS  Google Scholar 

  20. Ohnishi T, Noguchi S, Murakami N, Tajiri J, Harao M, Kawamoto H. Extraocular Muscles in Graves’ opthalmopathy: Usefulness of T2 relaxation time measurements. Radiology 1994, 190: 857–62.

    PubMed  CAS  Google Scholar 

  21. Utech CI, Khatibnia U, Winter Pf, Wulle KG. MR T2 relaxation time for the assessment of retrobulbar inflammation in Graves’ ophthalmopathy. Thyroid 1995, 5: 185–93.

    PubMed  CAS  Google Scholar 

  22. Kahaly G, Diaz M, Just M, Beyer J, Lieb N. Role of octreoscan and correlation with MR imaging in Graves’ ophthalmopathy. Thyroid 1995, 5: 107–11.

    Article  PubMed  CAS  Google Scholar 

  23. Byrne FS, Gendron E, Glaser J. Diameter of normal extraocular muscles with echography. Am J Ophthalmol 1991, 112: 706–12.

    PubMed  CAS  Google Scholar 

  24. Given-Wilson R, Pope RM, Michell MJ, Cannon R, McGregor AM. The use of real/time orbital ultrasound in Graves’ ophthalmopathy: a comparison with computer tomography. Brit J Radiol 1989, 62: 705–9.

    Article  PubMed  CAS  Google Scholar 

  25. Erickson BA, Harris GJ, Lewandowski MF, Murray KJ, Massaro BM. Echographic monitoring of response of extraocular muscles to irradiation in Graves’ ophthalmopathy. Int J Radiat Oncol Biol Phys 1995, 31: 651–60.

    Article  PubMed  CAS  Google Scholar 

  26. Prummel M, Suttorp-Schulten M, Wiersinga W, Verbeek A, Mourits M, Koorneef L. A new ultrasonographic method to detect disease activity and predict response to immunosuppressive treatment in Graves’ ophthalmopathy. Ophthalmology 1993, 100: 556–61.

    Article  PubMed  CAS  Google Scholar 

  27. Nagy EV, Toth J, Kaldi I, Damjanovich J, Meiosi E, Lenkey A. Graves’ophthalmopathy: eye muscle involvement in patients with diplopia. Eur J Endocrinol 2000, 142: 591–7.

    Article  PubMed  CAS  Google Scholar 

  28. Demer JL, Kerman BM. Comparison of standardized echography with magnetic resonance imaging to measure extraocular muscle size. Am J Ophthalmol 1994, 118: 351–61.

    PubMed  CAS  Google Scholar 

  29. Benning H, Lieb W, Kahaly GJ, Grehn F. Color Doppler ultrasound findings in patients with thyroid ophthalmopathy. Ophthalmologe 1994, 91: 20–5.

    PubMed  CAS  Google Scholar 

  30. Krassas GE, Kahaly GJ. The role of octreoscan in thyroid eye disease. Eur J Endocrinol 1999, 140: 373–5.

    Article  PubMed  CAS  Google Scholar 

  31. Kahaly G, Diaz M, Hahn K, Beyer J, Bockisch A. Indium 111- Pentetreotide scintigraphy in Graves’ ophthalmopathy. J Nucl Med 1995, 36: 550–4.

    PubMed  CAS  Google Scholar 

  32. Kahaly G, Görges R, Diaz M, Hommel G, Bockisch A. Indium- 111-Pentetreotide in Graves’ Disease. J Nucl Med 1998, 39: 533–6.

    PubMed  CAS  Google Scholar 

  33. Kahaly GJ, Förster GJ. Somatostatin receptor scintigraphy in thyroid eye disease. Thyroid 1998, 8: 549–52.

    Article  PubMed  CAS  Google Scholar 

  34. Postema PTE, Krenning EP, Wijngaarde R, et al. (111-In-DTPA-D-Phe1) octreotide scintigraphy in thyroidal and orbital Graves’ disease: A parameter for disease activity? J Clin Endocrinol Metab 1994, 79: 1845–51.

    Article  PubMed  CAS  Google Scholar 

  35. Gerding MN, van der Zant FM, van Royen EA, et al. Octreotide-scintigraphy is a disease-activity parameter in Graves’ ophthalmopathy. Clin Endocrinol (Oxf) 1999, 50: 373–9.

    Article  CAS  Google Scholar 

  36. Moncayo R, Baldnisera I, Decristoforo C, Kendler D, Donnemiller E. Evaluation of immunological mechanisms mediating thyroid-associated ophthalmopathy by radionuclide imaging using somatostatin analog 111-In-octreotide. Thyroid 1997, 7: 21–9.

    Article  PubMed  CAS  Google Scholar 

  37. Krassas GE, Dumas A, Pontikides N, Kaltsas Th. Somatostatin receptor scintigraphy and octreotide treatment in patients with thyroid eye disease. Clin Endocrinol (Oxf) 1995, 42: 571–80.

    Article  CAS  Google Scholar 

  38. Krassas GE, Kaltsas Th, Dumas A, Pontikides N, Tolis G. Lanreotide in the treatment of patients with thyroid eye disease. Eur J Endocrinol 1999, 136: 416–22.

    Article  Google Scholar 

  39. Förster GJ, Krummenauer F, Nickel O, Kahaly GJ. Somatostatin- receptor scintigraphy in Graves’disease: Reproducibility and inter-/intra-observer variability. Cancer Biother Radiol 2000, 21: 231–6.

    Google Scholar 

  40. Förster GJ, Nickel O, Raab D, Andreas J, Kahaly GJ. Somatostatin- receptor scintigraphy in Graves’ophthalmopathy. A new, standardized method for assessement of orbital disease activity. J Nucl Med 1999, 40: 207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Kahaly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahaly, G.J. Recent developments in Graves’ ophthalmopathy imaging. J Endocrinol Invest 27, 254–258 (2004). https://doi.org/10.1007/BF03345274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345274

Key-words

Navigation