Skip to main content
Log in

Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Smad proteins have been shown to mediate the signal transduction pathway downstream of the transforming growth factor β (TGFβ). TGFβ induces the phosphorylation of Smad2 and Smad3 which associate with Smad4 and translocate to the nucleus where they regulate gene transcription; besides these stimulatory Smads, the inhibitory Smads, Smad6 and Smad7, oppose signaling by blocking receptors and interrupting the phosphorylation of Smads2/3. The loss of TGFβ-sensitivity, caused by inactivation of components of TGFβ signaling, as Smad4, underlies a wide variety of human disorders, including cancer. In addition, the overexpression of the inhibitory Smad7, which prevents the phosphorylation of Smad2/3 and consequently inhibits TGFβ signaling pathways, was observed in some diseases. In the present study we investigated the expression of Smad4 and Smad7 in thyroid cell lines (NPA papillary carcinoma, WRO follicular carcinoma and ARO anaplastic carcinoma) by RT-PCR and immunocytochemistry. Our results show that Smad4 was expressed in all thyroid cell lines and controls analyzed, differently from other classes of tumors where Smad4 expression was deleted. On the other hand, Smad7 was overexpressed in ARO anaplastic cell line, the most malignant follicular thyroid carcinoma. Our data suggest that the abrogation of the TGFβ response by Smad7 overexpression may be a mechanism for the tumor aggressiveness observed in undifferentiated thyroid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heldin C.H., Miyazono K., ten Dijke P. TGF-β signaling from cell membrane to nucleus through Smad proteins. Nature 1997, 390: 465–471.

    Article  PubMed  CAS  Google Scholar 

  2. Massagué J., Blain S.W., Lo R.S. TGF β signaling in growth control, cancer, and heritable disorders. Cell 2000, 103: 295–309.

    Article  PubMed  Google Scholar 

  3. Blobe C.G, Schieldmann W.P, Lodish H.F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 2000, 342: 1350–1358.

    Article  PubMed  CAS  Google Scholar 

  4. Wrana J.L. Regulation of Smad activity. Cell 2000, 100: 189–192.

    Article  PubMed  CAS  Google Scholar 

  5. Attisano L., Lee-Hoeflich S.T. The Smads. Genome Biology 2001, 2: 3010.1–3010.8.

    Article  Google Scholar 

  6. Nakao A., Afrakhte M., Morén A., et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 1997, 389: 631–635.

    Article  PubMed  CAS  Google Scholar 

  7. Hölting T., Zielke A., Siperstein A.E., Clark O.H., Duh Q-Y. Transforming growth factor-β1 is a negative regulator for differentiated thyroid cancer: studies of growth, migration, invasion, and adhesion of cultured follicular and papillary thyroid cancer cell lines. J. Clin. Endocrinol. Metab. 1995, 79: 806–813.

    Google Scholar 

  8. Markowitz S., Wang J., Myeroff L., et al. Inactivation of the type II TGFβ receptor in colon cancer cells with microsatellite instability. Science 1995, 268: 1336–1338.

    Article  PubMed  CAS  Google Scholar 

  9. Hahn S.A., Schutte M., Hoque A.T.M.S., et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996, 271: 350–353.

    Article  PubMed  CAS  Google Scholar 

  10. Riggins G.J., Kinzler K.W., Vogelstein B., Thiagalingam S. Frequency of Smad mutations in human cancers. Cancer Res. 1997, 57: 2578–2580.

    PubMed  CAS  Google Scholar 

  11. Kimura E.T., Kopp P., Zbaeren J., et al. Expression of transforming growth factor β1, β2, and β3 in multinodular goiters and differentiated thyroid carcinomas: a comparative study. Thyroid 1999, 9: 119–125.

    Article  PubMed  CAS  Google Scholar 

  12. Ohta K., Pang X.P., Berg L., Hershman J.M. Antitumor actions of cytokines on new human papillary thyroid carcinoma cell lines. J. Clin. Endocrinol. Metab. 1996, 81: 2607–2612.

    PubMed  CAS  Google Scholar 

  13. Asmis L.M., Kaempf J., Von Gruenigen C., Kimura E.T., Wagner H.E., Studer H. Acquired and naturally occurring resistance of thyroid follicular cells to the growth inhibitory action of transforming growth factor-beta 1 (TGF-β1). J. Endocrinol. 1996, 149: 485–496.

    Article  PubMed  CAS  Google Scholar 

  14. Estour A.J., Van Herle G.J.F., Juillard T.L., et al. Characterization of a human follicular thyroid carcinoma cell line (UCLA RO 82 W-1). Virchows Arch. [Cell. Pathol.] 1989, 57: 167–174.

    Article  CAS  Google Scholar 

  15. Pang X.J., Hershmann J.M., Chung M., Pekary A.E. Characterization of tumor necrosis factor-a receptors in human and rat thyroid cells and regulation of the receptors by thyrotropin. Endocrinology 1989, 125: 1783–1788.

    Article  PubMed  CAS  Google Scholar 

  16. Biscolla R.P.M., Cerutti J.M., Maciel R.M.B. Detection of recurrent thyroid cancer by sensitive nested RT-PCR of thyroglobulin and sodium/iodine symporter messenger RNA transcripts in peripheral blood. J. Clin. Endocrinol. Metabol. 2000, 85: 3623–3627.

    CAS  Google Scholar 

  17. Park K., Kim S.J., Bang Y., Park J.K., Roberts A.B., Sporn M.P. Genetic changes in the transforming growth factor β (TGF-β) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-β. Proc. Natl. Acad. Sci. USA 1994, 91: 8772–8776.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Cowin A.J., Davis J.R.E., Bidey S.P. Transforming growth factor-β1 production in porcine thyroid follicular cells: regulation by intrathyroidal organic iodine. J. Mol. Endocrinol. 1992, 9: 197–205.

    Article  PubMed  CAS  Google Scholar 

  19. Grubeck-Loebenstein B., Buchan G., Sadeghi R. et al. Transforming growth factor beta regulates thyroid growth. Role in the pathogenesis of nontoxic goiter. J. Clin. Invest. 1989, 83: 764–770.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Lazzareschi D., Ranieri A., Mincione G., Taccogna S., Nardi F., Colleta G. Human malignant thyroid tumors displayed reduced levels of transforming growth factor β receptor type II messenger RNA and protein. Cancer Res. 1997, 57: 2071–2076.

    Google Scholar 

  21. West J., Munoz-Antonia T., Johnson J.G., Klotch D., Muro-Cacho C.A. Transforming growth factor-β type II receptors and Smad proteins in follicular thyroid tumors. Laryngoscope 2000, 110: 1323–1327.

    Article  PubMed  CAS  Google Scholar 

  22. Heldin N.E., Bergström D., Hermansson A., et al. Lack of responsiveness to TGF-β1 in a thyroid carcinoma cell line with functional type I and type II TGF-β receptors and Smad proteins, suggests a novel mechanism for TGF-β insensitivity in carcinoma cells. Mol. Cell. Endocrinol. 1999, 153: 79–90.

    Article  PubMed  CAS  Google Scholar 

  23. Chen C-H., Kang Y., Massagué J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor β growth arrest program. Proc. Natl. Acad. Sci. USA 2001, 98: 992–999.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Pientepol J.A., Münger K., Howley P.M., Stein R.W., Moses H.L. Factor-binding element in the human c-myc promoter involved in transcriptional regulation by transforming growth factor β1 and by the retinoblastoma gene product. Proc. Natl. Acad. Sci. USA 1991, 88: 10227–10231.

    Article  Google Scholar 

  25. Usa T., Tsukazaki T., Namba H., et al. Correlation between suppression of c-myc and antiproliferative effect of transforming growth factor-β1 in thyroid carcinoma cell growth. Endocrinology 1994, 135: 1378–1384.

    PubMed  CAS  Google Scholar 

  26. Cerutti J.M., Trapasso F., Battaglia C., et al. Block of cmyc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines. Clin. Cancer Res. 1996, 2: 119–126.

    PubMed  CAS  Google Scholar 

  27. Visconti R., Cerutti J.M., Battista S., et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFκβ p65 protein expression. Oncogene 1997, 15: 1987–1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerutti, J.M., Ebina, K.N., Matsuo, S.E. et al. Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines. J Endocrinol Invest 26, 516–521 (2003). https://doi.org/10.1007/BF03345213

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345213

Key-words

Navigation