Skip to main content
Log in

Lower limb alactic anaerobic power output assessed with different techniques in morbid obesity

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Short-term alactic anaerobic performance in jumping (5 consecutive jumps with maximal effort), sprint running (8 m) and stair climbing (modified Margaria test) were measured in 75 obese subjects (BMI: 40.3±5.0 kg/m2) and in 36 lean control subjects (BMI: 22.4±3.2 kg/m2) of the same age and gender distribution. The results show that obese subjects attained a significantly lower specific (per unit body mass) power output both in jumping (Wspec,j; p<0.001) and stair climbing (Wspec,s; p<0.001) and run at a significantly lower average velocity (v; p<0.001) during sprinting. In spite of the different motor skillfulness required to accomplish the jumping and climbing tests, Wspec,s (and hence the vertical velocity in climbing, vv) was closely correlated with Wspec,j (R2=0.427, p<0.001). In jumping, although the average force during the positive work phase was significantly higher in obese subjects (p<0.001), no difference between the 2 groups was detected in absolute power. In stair climbing the absolute power output of obese resulted significantly higher (18%) than that of lean controls (p<0.001). In sprint running, the lower average horizontal velocity attained by obese subjects also entailed a different locomotion pattern with shorter step length (Ls; p<0.001), lower frequency (p<0.001) and longer foot contact time with ground (Tc,r; p<0.001). Wspec,j seems to be a determinant of the poorer motor performance of obese, being significantly correlated with: I) the vertical displacement of the centre of gravity (R2=0.853, p<0.001) in jumping; II) with vv in stair climbing; and III) with Tc,r (R2=0.492, p<0.001), Ls (R2=0.266, p<0.001) and v (R2=0.454, p<0.001) in sprinting. The results suggest that obese individuals, although partially hampered in kinetic movements, largely rely on their effective specific power output to perform complex anaerobic tasks, and they suffer from the disproportionate excess of inert mass of fat. Furthermore, in view of the sedentary style of life and the consequent degree of muscle de-conditioning accompanying this condition, it may prove useful to implement rehabilitation programs for obesity with effective power training protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flegal K.M. The obesity epidemic in children and adults: current evidence and research issues. Med. Sci. Sports Exerc. 1999, 31: S509–S514.

    Article  CAS  PubMed  Google Scholar 

  2. Mokdad A.H., Serdula M.K., Dietz W.H., Bowman B.A., Marks J.S., Koplan J.P. The continuing epidemic of obesity in the United States. J.A.M.A. 2000, 284: 1650–1651.

    Article  CAS  PubMed  Google Scholar 

  3. Di Pietro L. Physical activity in the prevention of obesity: current evidence and research issues. Med. Sci. Sports Exerc. 1999, 31: S542–S546.

    Article  Google Scholar 

  4. Wing R.R. Physical activity in the treatment of adulthood overweight and obesity: current evidence and research issues. Med. Sci. Sports Exerc. 1999, 31: S547–S552.

    Article  CAS  PubMed  Google Scholar 

  5. Kraemer W.J., Volek J.S., Clark K.L., Gordon S.E., Puhl S.M., Koziris L.P., McBride J.M., Triplett-McBride N.T., Putukian M., Newton R.U., Häkkinen K., Bush J.A., Sebastianelli W.J. Influence of exercise training on physiological and performance changes with weight loss in men. Med. Sci. Sports Exerc. 1999, 31: 1320–1329.

    Article  CAS  PubMed  Google Scholar 

  6. Sartorio A., Narici M.V., Fumagalli E., Faglia G., Lafortuna C.L. Aerobic and anaerobic performance before and after a short-term body mass reduction program in obese subjects. Diab. Nutr. Metab. 2001, 14: 51–57.

    CAS  Google Scholar 

  7. Westerterp K.R. Obesity and physical activity. Int. J. Obes. Relat. Metab. Disord. 1999, 23 (Suppl. 1): 59–64.

    Article  PubMed  Google Scholar 

  8. Kitagawa K., Suzuki M., Miyashita M. Anaerobic power output of young obese men: comparison with non-obese men and the role of excess fat. Eur. J. Appl. Physiol. 1980, 43: 229–234.

    Article  CAS  Google Scholar 

  9. Bosco C., Luhtanen P., Komi P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. 1983, 50: 273–282.

    Article  CAS  Google Scholar 

  10. Margaria R., Aghemo P., Rovelli E. Measurement of muscular power (anaerobic) in man. J. Appl. Physiol. 1966, 21: 1662–1664.

    CAS  PubMed  Google Scholar 

  11. Zar J.H. Biostatistical analysis. Prentice-Hall International Editions, Eaglewood Cliffs, 1984, pp. 292–305.

    Google Scholar 

  12. Thomas E.L., Saeed N., Hajnal J.V., Brynes A., Goldstone A.P., Frost G., Bell J.D. Magnetic resonance imaging of total body fat. J. Appl. Physiol. 1998, 85: 1778–1785.

    CAS  PubMed  Google Scholar 

  13. Caiozzo V.J., Kyle C.R. The effect of external loading upon power output in stair climbing. Eur. J. Appl. Physiol. 1980, 44: 217–222.

    Article  CAS  Google Scholar 

  14. Davies C.T.M., Young K. Effects of external loading on short-term power output in children and young male adults. Eur. J. Appl. Physiol. 1984, 52: 351–354.

    Article  CAS  Google Scholar 

  15. Josephson R.K. Dissecting muscle power output. J. Exp. Biol. 1999, 202: 3369–3375.

    CAS  PubMed  Google Scholar 

  16. Mitsiopoulos N., Baumgartner R.N., Heymsfield S.B., Lyons W., Gallagher D., Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J. Appl. Physiol. 1998, 85: 115–122.

    CAS  PubMed  Google Scholar 

  17. Hickey M.S., Carey J.O., Azevedo J.L., Houmard J.A., Pories W.J., Israel R.G., Dohm G.L. Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. Am. J. Physiol. 1995, 268: E453–E457.

    CAS  PubMed  Google Scholar 

  18. Blimkie C.J.R., Sale D.G., Bar-Or O. Voluntary strength, evoked twitch contractile properties and motor unit activation of knee extensors in obese and non-obese adolescent males. Eur. J. Appl. Physiol. 1990, 61: 313–318.

    Article  CAS  Google Scholar 

  19. Narici M.V., Hoppeler H., Kayser B., Landoni L., Claassen H., Gavardi C., Conti M., Cerretelli P. Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol. Scand. 1996, 157: 175–186.

    Article  CAS  PubMed  Google Scholar 

  20. Martin P.E., Nelson R.C. The effect of carried loads on the walking patterns of men and women. Ergonomics 1986, 29: 1191–1202.

    Article  CAS  PubMed  Google Scholar 

  21. Hoyt D.F., Wickler S.J., Cogger E.A. Time of contact and step length: the effect of limb length, running speed, load carrying and incline. J. Exp. Biol. 2000, 203: 221–227.

    CAS  PubMed  Google Scholar 

  22. Kram R., Taylor C.R. Energetics of running: a new perspective. Nature 1990, 346: 265–267.

    Article  CAS  PubMed  Google Scholar 

  23. di Prampero P.E., Mognoni P. Maximal anaerobic power in man. In: di Prampero P.E., Poortmans J.R. (Eds.), Medicine and Sport. Karger, Basel, 1981, vol. 13, pp. 38–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Sartorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafortuna, C.L., Fumagalli, E., Vangeli, V. et al. Lower limb alactic anaerobic power output assessed with different techniques in morbid obesity. J Endocrinol Invest 25, 134–141 (2002). https://doi.org/10.1007/BF03343977

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343977

Key-words

Navigation