Skip to main content
Log in

Glutamate and catabolites of high-energy phosphates in the striatum and brainstem of young and aged rats subchronically exposed to manganese

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The degradation of high-energy phosphates was recently shown to precede manganese-induced cellular death. We evaluated hypoxanthine, xanthine, uric acid and glutamate levels in the striatum and brainstem of 3- and 20-month-old rats after subchronic oral exposure to manganese (MnCl2, 200 mg/kg/day in young rats, and 50–100 or 200 mg/kg/day in aged rats). Aged rats had higher basal levels of hypoxanthine, xanthine, and glutamate both in the striatum and brainstem than young rats; conversely, basal uric acid levels were lower in the striatum, but higher in the brainstem. Manganese induced a significantly greater increase in hypoxanthine, xanthine, uric acid and gluta-mate levels in aged rats than in young rats in both brain regions. These findings depict a greater manganese-induced energetic impairment (increases in hypoxanthine and xanthine levels), xanthine oxidase-induced free radical generation (increases in xanthine and uric acid levels), and excitotoxic status (increases in glutamate levels) in aged rats than in young rats. In addition, these findings may also account for a greater manganese toxicity to the nigro-striatal dopaminergic system in aged than in young rats, as shown in a previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donaldson J.: The physiopathological significance of manganese in brain: Its relation to schizophrenia and neurode-generative disorders. Neurotoxicology 8: 451–462, 1987.

    CAS  PubMed  Google Scholar 

  2. Sun A.Y., Yang W.L., Kim H.D.: Free radical and lipid per-oxidation in manganese-induced neuronal cell injury. Ann. N.Y. Acad. Sci. 679: 358–363, 1993.

    Article  CAS  PubMed  Google Scholar 

  3. Desole M.S, Esposito G., Migheli R., Sircana S., Delogu M.R., Fresu L., Miele M., De Natale G., Miele E.: Glutathione deficiency potentiates manganese toxicity in rat striatum and brainstem and in PC12 cells. Pharmacol. Res. 36: 285–292, 1997.

    Article  CAS  PubMed  Google Scholar 

  4. Rabinovich A.D., Hastings T.G.: Role of endogenous glutathione in the oxidation of dopamine. J. Neurochem. 71: 2071–2078, 1998.

    Article  Google Scholar 

  5. Liccione J.J., Maines M.D.: Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J. Pharmacol. Exp. Ther. 247: 156–161, 1988.

    CAS  PubMed  Google Scholar 

  6. Desole M.S., Esposito G., Migheli R., Fresu L., Sircana S., Zangani D., Miele M., Miele E.: Cellular defense mechanism in the striatum of young and aged rats subchronically exposed to manganese. Neuropharmacology 34: 289–295, 1995.

    Article  CAS  PubMed  Google Scholar 

  7. Hastings T.G., Lewis D.A., Zigmond M.J.: Role of oxidative stress in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl. Acad. Sci. U.S.A. 93: 1056–1061, 1996.

    Google Scholar 

  8. Desole M.S, Sciola L., Delogu M.R., Sircana S., Migheli R.: Manganese and 1-methyl-4-(2-′ethylphenyl)-1,2,3,6-tetrahydropyridine induce apoptosis in PC12 cells. Neurosci. Lett. 209: 193–196, 1996.

    Article  CAS  PubMed  Google Scholar 

  9. Desole M.S, Sciola L., Delogu M.R., Sircana S., Migheli R., Miele E.: Manganese and 1-methyl-4-(2-′ethylphenyl)-1,2,3,6-tetrahydropyridine-induced apoptosis in PC12 cells: role of oxidative stress. Neurochem. Int. 31: 169–176, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Migheli R., Godani C., Sciola L., Delogu M.R., Serra P.A., Zangani D., De Natale G., Miele E., Desole M.S.: Enhancing effect of manganese on L-DOPA-induced apoptosis in PC12 cells: role of oxidative stress. J. Neurochem. 73: 1155–1163, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Sershen H., Mason M.F., Hashim A., Lajtha A.: Effect of Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on age-related changes in dopamine turnover and transport function in the mouse striatum. Eur. J. Pharmacol. 113: 135–136, 1985.

    Article  CAS  PubMed  Google Scholar 

  12. Brewer G.J.: Age-related toxicity to lactate, glutamate and beta-amyloid in cultured adult neurons. Neurobiol. Aging 19: 561–568, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Noack H., Lindenau J., Rothe F., Asayama K., Wolf G.: Differential expression of superoxide dismutase isoform in neuronal and glial compartments in the course of excitotoxically mediated neurodegeneration: relation to oxidative and nitrergic stress. Glia 23: 285–297, 1998.

    Article  CAS  PubMed  Google Scholar 

  14. McNaught K.S., Jenner P.: Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenyl-pyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J. Neurochem. 73: 2469–2476, 1999.

    Article  CAS  PubMed  Google Scholar 

  15. Desole M.S., Esposito G., Enrico P., Miele M., Fresu L., De Natale G., Miele E., Grella G.: Effect of ageing on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxic effects on striatum and brainstem in the rat. Neurosci. Lett. 159: 143–146, 1993.

    Article  CAS  PubMed  Google Scholar 

  16. Roth J.A., Feng L., Walowitz J., Browne R.W.: Manganeseinduced rat pheochromocytoma (PC12) cell death is independent of caspase activation. J. Neurosci. Res. 61: 162–171, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Hillered L., Kotwica Z., Ungerstedt U.: Interstitial and cerebrospinal fluid levels of energy-related metabolites after middle cerebral artery occlusion in rats. Res. Exp. Med. 191: 219–225, 1991.

    Article  CAS  Google Scholar 

  18. Zoref-Shani E., Bromberg Y., Shirin C., Sidi Y., Sperling O.: Metabolic fate of hypoxanthine and inosine in cultured cardiomyocites. J. Mol. Cell. Cardiol. 24: 183–189, 1992.

    Article  CAS  PubMed  Google Scholar 

  19. Becker B.B.: Towards the physiological function of uric acid. Free Rad. Biol. Med. 14: 615–631, 1993.

    Article  CAS  PubMed  Google Scholar 

  20. Desole M.S., Esposito G., Migheli R., Fresu L., Sircana S., Miele M., De Natale G., Miele E.: Allopurinol protects against manganese-induced oxidative stress in the striatum and in the brainstem of the rat. Neurosci. Lett. 192: 73–76, 1995.

    Article  CAS  PubMed  Google Scholar 

  21. Gavin C.E., Gunter K.K., Gunter T.E.: Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol. Appl. Pharmacol. 115: 1–5, 1992.

    Article  CAS  PubMed  Google Scholar 

  22. Bondy S.C., LeBel C.P.: Relationship between excitotoxicity and oxidative stress in the central nervous system. Free Rad. Biol. Med. 14: 433–452, 1993.

    Article  Google Scholar 

  23. Han J., Cheng F-C., Yang Z., Dryhurst G.: Inhibitors of mitochondrial respiration, iron (II) and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson’s disease. J. Neurochem. 73: 1683–1695, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Kiyatkin E.A., Rebec G.V.: Ascorbate modulates glutamate-induced excitations of striatal neurons. Brain Res. 812: 14–22, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Murphy T.H., Schnaar T.O., Coyle J.T.: Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J. 4: 1624–1633, 1990.

    CAS  PubMed  Google Scholar 

  26. Dringen R., Pfeiffer B., Hamprecht B.: Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of Cys-Gly as precursor for neuronal glutathione. J. Neurosci. 15: 562–569, 1999.

    Google Scholar 

  27. Trotti D., Danbolt N.C., Volterra A.: Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic degeneration? Trends Pharmacol. Sci. 19: 328–334, 1998.

    Article  CAS  PubMed  Google Scholar 

  28. Stover J.F., Lowitzsch K., Kempski O.S.: Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases. Neurosci. Lett. 238: 25–28, 1997.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Desole M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miele, M., Serra, P.A., Esposito, G. et al. Glutamate and catabolites of high-energy phosphates in the striatum and brainstem of young and aged rats subchronically exposed to manganese. Aging Clin Exp Res 12, 393–397 (2000). https://doi.org/10.1007/BF03339866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03339866

Key words

Navigation