Skip to main content
Log in

The Ongoing Value of Proof

  • Published:
Journal für Mathematik-Didaktik Aims and scope Submit manuscript

Zusammenfassung

Während der letzten dreißig Jahre haben sich viele nordamerikanische Mathematikdidaktiker dafür eingesetzt, dem Beweisen im Mathematikunterricht der Sekundarstufen eine geringere Rolle als bisher zuzuweisen. Diese Auffassung wurde großenteils mit Entwicklungen in der Mathematik selbst, mit den Ideen von Lakatos und mit geänderten sozialen Werten begründet. Der folgende Artikel versucht zu zeigen, daß keines dieser Argumente einen solchen Auffassung swandel rechtfertigt und daß das Beweisen weiterhin seinen Wert für den Schulunterricht behält, wegen seiner zentralen Bedeutung für das mathematische Arbeiten und als ein wichtiges Mittel zur Beförderung von Verständnis.

Abstract

Over the past thirty years, many mathematics educators in North America have suggested that proof be relegated to a lesser role in the secondary mathematics curriculum. This view has been shaped in large part by developments in mathematics itself, by the thinking of Lakatos and by changing social values. This paper argues that none of these factors justifies such a move, and that proof continues to have value in the classroom, both as a reflection of its central role in mathematical practice and as an important tool for the promotion of understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Agassi, J. (1981). Lakatos on proof and on mathematics. Logique et Analyse, 24, 437–439.

    Google Scholar 

  • Andrews, G. (1994). The death of proof? Semi-rigorous mathematics? You’ve got to be kidding! The Mathematical Intelligencer, 16(4), 16–18.

    Google Scholar 

  • Atiyah, M., et al. (1994). Responses to “Theoretical mathematics”: Towards a cultural synthesis of mathematics and theoretical physics. Bulletin of the American Mathematical Society, 30(2), 178–207.

    Article  Google Scholar 

  • Babai, L. (1994). Probably true theorems, cry wolf? Notices of the American Mathematical Society, 41(5), 453–454.

    Google Scholar 

  • Blum, M. (1986). How to prove a theorem so no one else can claim it. Proceedings of the International Congress of Mathematicians, 1444–1451.

    Google Scholar 

  • Blum, W., & Kirsch, A. (1991) Preformal proving: Examples and reflexions. Educational Studies in Mathematics, 22(2), 183–203

    Article  Google Scholar 

  • Cipra, B. (1993). New computer insights from “transparent” proofs. What’s Happening in the Mathematical Sciences, 1, 7–12.

    Google Scholar 

  • Confrey, J. (1994). A theory of intellectual development. For the Learning of Mathematics, 14(3), 2–8.

    Google Scholar 

  • Davis, P. J. & Hersh, R. (1981). The mathematical experience. Boston: Houghton Mifilin.

    Google Scholar 

  • Dawson, A. J. (1969). The implications of the work of Popper, Polya and Lakatos for a model of mathematics instruction. Unpublished doctoral dissertation, University of Alberta, Canada.

    Google Scholar 

  • Dossey, J. (1992). The nature of mathematics: Its role and its influence. In D. Grows (Ed.), Handbook of research on mathematics teaching and learning, 39–48. New York: Macmillan.

  • Epstein, D., & Levy, S. (1995). Experimentation and proof in mathematics. Notices of the American Mathematical Society, 42(6), 670–674.

    Google Scholar 

  • Ernest, P. (1991). The philosophy of mathematics education. London: Falmer.

    Google Scholar 

  • Ernest, P. (1996). Popularization: Myths, massmedia and modernism. In Bishop, A. et al. (Eds.), International handbook of mathematical education, Part 2. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Feyeraband, P. (1975). Imre Lakatos. British Journal for the Philosophy of Science, 26, 1–18.

    Article  Google Scholar 

  • Greeno, J. (1994). Comments on Susanna Epp’s chapter. In Schoenfeld A. (ed.), Mathematical thinking and problem solving. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Goldwasser, S., Micali, S. & Rackoff, C. (1985). The knowledge complexity of interactive proof-systems. Proceedings of the 17th ACM Symposium on Theory of. Computing, 291–304.

    Google Scholar 

  • Hacking, I. (1979). Imre Lakatos’ philosophy of science. British Journal for the Philosophy of Science, 30, 390–39

    Article  Google Scholar 

  • Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6–13.

    Article  Google Scholar 

  • Hersh, R. (1986). Some proposals for reviving the philosophy of mathematics. In T. Tymoczko (Ed.), New directions in the philosophy of mathematics. Boston: Birkhäuser.

    Google Scholar 

  • Horgan, J. (1993). The death of proof. Scientific American, 269(4), 93–103

    Article  Google Scholar 

  • Jaffe, A. & Quinn, F. (1993). “Theoretical mathematics”: Towards a cultural synthesis of mathematics and theoretical physics. Bulletin of the American Mathematical Society, 29(1), 1–13.

    Article  Google Scholar 

  • Kitcher, P. (1984). The nature of mathematical knowledge. New York: Oxford University Press.

    Google Scholar 

  • Lakatos, I. (1976). Proofs and refutations. Cambridge. Cambridge University Press.

    Book  Google Scholar 

  • Lakatos, I. (1978). Mathematics, science and epistemology (Philosophical papers vol. 2). J. Worrall & G. Currie, (Eds.) Cambridge: Cambridge University Press.

  • Lampert, M. (1990). When the problem is not the question and the answer is not the solution. American Educational Research Journal, 27, 29–63.

    Article  Google Scholar 

  • Laudan, L. (1990). Science and relativism. Chicago: University of Chicago Press.

    Google Scholar 

  • Lehman, H. (1980). An examination of Imre Lakatos’ philosophy of mathematics. The Philosophical Forum, (22), 1, 33–48

    Google Scholar 

  • MacLane, S. (1996). Despite physicists, proof is essential in mathematics. Paper presented at the Boston Colloquium for the Philosophy of Science “Proof and Progress in Mathematics,” Boston University. National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. National Council of Teachers of Mathematics, Reston, VA.

    Google Scholar 

  • National Council of Teachers of Mathematics (1991). Professional standards for teaching mathematics. National Council of Teachers of Mathematics, Reston, VA.

    Google Scholar 

  • Nickson, M. (1994). The culture of the mathematics classroom: An unknown quantity. In S. Lerman (Ed.), Cultural perspectives on the mathematics classroom, 7–36. Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Putnam, H. (1987). Mathematics, matter and methods: Philosophical papers, Volume 1. Cambridge: Cambridge University Press.

  • Steiner, M. (1983). The philosophy of Imre Lakatos. The Journal of Philosophv, LXXX, 9, 502–521.

    Article  Google Scholar 

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.

    Article  Google Scholar 

  • Wittmann, E., & Müller, G. (1990). When is a proof a proof? Bull. Soc. Math. Belg., 1, 15–40.

    Google Scholar 

  • Zeilberger, D. (1993). Theorems for a price: tomorrow’s semi-rigorous mathematical culture. Notices of the American Mathematical Society, 40(8), 978–981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanna, G. The Ongoing Value of Proof. JMD 18, 171–185 (1997). https://doi.org/10.1007/BF03338846

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03338846

Keywords

Navigation