Skip to main content
Log in

High-Temperature Titanium Alloys—A Review

  • Physical & Mechanical Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Summary

This paper discusses the development of high-temperature titanium alloys for use in gas turbine engines, airframes, and other applications. The high strength-to-density ratio of titanium makes it a very attractive design choice in energy-efficient high thrust-to-weight engines. Consideration is given to both alloy chemistry effects and the role of microstructure in determining mechanical properties. Future developments in alloy modifications and coating advances should result in increased use of titanium in demanding high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Meetham, The Development of Gas Turbine Engine Materials, Applied Science Publishers, London, 1981, pp. 63–87.

    Book  Google Scholar 

  2. R. I. Jaffee, “An Overview on Titanium Development and Application,” Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izumi, TMS-AIME Publications, Warrendale, Pennsylvania, 1980, pp. 53–74.

    Google Scholar 

  3. P. A. Blenkinsop, “Development in High Temperature Alloys,” Proceedings of the Fifth International Conference on Titanium, Munich, West Germany, 1984.

  4. F. H. Froes and J. R. Pickens, “Powder Metallurgy of Light Metal Alloys for Demanding Applications,” J. Metals, 36(1) (1984), pp. 14–28.

    Google Scholar 

  5. P. A. Blenkinsop and D. F. Neal, “New High Temperature Near Alpha Titanium Alloys,” TMS-AIME Fall Meeting, Philadelphia, Pennsylvania, October 1983, Technical Program, p. 21.

  6. D. F. Neal and P. A. Blenkinsop, “Titanium Alloy,” European Patent No. 0107419A1, 1984.

  7. R. H. Jeal, Rolls-Royce, Ltd., Derby, United Kingdom, private communication, 1984.

  8. S. Fujishiro and D. Eylon, “Improved Mechnical Properties of Alpha+Beta Ti Alloys by Pt Ion Plating,” Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izumi, TMS-AIME Publications, Warrendale, Pennsylvania 1980, pp. 1175–1182.

    Google Scholar 

  9. R. I. Jaffee, “The Physical Metallurgy of Titanium Alloys,” Progress in Metal Physics, Pergamon Press, New York, 1958.

    Google Scholar 

  10. C. F. Yolton, F. H. Froes, and R. F. Malone, “Alloy Element Effects in Metastable Titanium Alloys,” Met. Trans. A, 10A (1979), pp. 132–134.

    Article  Google Scholar 

  11. V. K. Grigorovich, Metallurgica, Toplivo Izv, ANSSR, OTN, No. 5, 1960, p. 38.

  12. P. J. Postans, unpublished report, Rolls-Royce Limited, Derby, United Kingdon, 1980.

  13. H. W. Rosenberg, “Titanium Alloying in Theory and Practice,” The Science, Technology and Application of Titanium, edited by R. I. Jaffee and N. E. Promisel, Pergamon Press, New York, 1970, pp. 851–859.

    Chapter  Google Scholar 

  14. F. H. Froes, J. C. Chesnutt, C. G. Rhodes, and J. C. Williams, “Relationship of Fracture Toughness and Ductility to Microstructure and Fractographic Features in Advanced Deep Hardenable Titanium Alloys,” Toughness and Fracture Behavior of Titanium, ASTM STP 651, ASTM, 1978, pp. 115–153.

  15. W. A. Baeslack III, D. W. Becker, and F. H. Froes, “Advances in Titanium Alloy Welding Metallurgy,” J. Metals, 36(5) (1984), pp. 46–58.

    Google Scholar 

  16. P. A. Blenkinsop, IMI Titanium, Ltd., Birmingham, United Kingdon, private communication, 1979.

  17. N. E. Paton and M. W. Mahoney, “Creep of Titanium-Silicon Alloys,” Met. Trans. A, 7A (1976), pp. 1685–1694.

    Article  Google Scholar 

  18. M. W. Mahoney, N. E. Paton, W. M. Parris, and J.A. Hall, “The Effect of Minor Alloying Element Additions on Mechanical Properties of Titanium Alloys,” AFML-TR-77-56, 1977.

  19. H. M. Flower, P. R. Swan, and D. R. F. West, “Silicide Precipitation in the Ti-Zr-Al-Sn System,” Met. Trans., 2 (1971), pp. 3289–3297.

    Article  Google Scholar 

  20. A. T. K. Arradi, H. M. Flower, and D. R. F. West, “Creep Resistance of Certain Alloys of the Ti-Al-Zr-Mo-Si System,” Met. Technol., 6(1) (1979), pp. 16–23.

    Article  Google Scholar 

  21. Hideji Suzuki, “The Yield Strength of Binary Crystals,” Dislocations and Mechanical Properties of Crystals, edited by J. C. Fisher, W. G. Johnston, R. Thomson, and T. Vreeland, Jr., John Wiley and Sons, New York, 1956, pp. 361–390.

    Google Scholar 

  22. S. Amelinckx, The Direct Observation of Dislocations, Academic Press, New York, 1964, p. 381.

    MATH  Google Scholar 

  23. G. S. Hall, S. R. Seagle, and H. B. Bomberger, “Improvement in High-Temperature Tensile and Creep Properties of Titanium Alloys,” Titanium, Science and Technology, edited by R. I. Jaffee and H. M. Burte, Plenum Press, New York, 1973, pp. 2141–2150.

    Google Scholar 

  24. S. R. Seagle, G. S. Hall, and H. B. Bomberger, “High Temperature Properties of Ti-6Al-2Sn-4Zr-2Mo-0.09Si,” Metals Engineering Quarterly, February 1975, pp. 48–54.

  25. C. G. Rhodes, N. E. Paton, and M. W. Mahoney, “The Effect of Silicon on the Elevated Temperature Creep Resistance of Ti-8Al-5Zr-5Nb,” J. Metals, 30 (1978), p. 54.

    Google Scholar 

  26. S. M. L. Sastry and H. A. Lipsitt, “Ordering Transformation and Mechanical Properties of Ti3Al and Ti3Al-Nb Alloys,” Met. Trans. A, 8A (1977), pp. 1543–1552.

    Article  Google Scholar 

  27. C. G. Rhodes, C. H. Hamilton, and N. E. Paton, “Titanium Aluminides for Elevated Temperatures Applications,” AFML-TR-78-130, 1978.

  28. S. M. L. Sastry, T. C. Peng, P. J. Meschter, and J. E. O’Neal, “Rapid Solidification Processing of Titanium Alloys,” J. Metals, 35(9) (1983), pp. 21–28.

    Google Scholar 

  29. S. M. L. Sastry and H. A. Lipsitt, “Plastic Deformation of TiAl and Ti3Al,” Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izumi, TMS-AIME Publications, Warrendale, Pennsylvania, 1980, pp. 1231–1244.

    Google Scholar 

  30. P. L. Martin, H. A. Lipsitt, N. T. Nuhfer, and J. C. Williams, “The Effect of Alloying on Microstructure and Properties of Ti3Al and TiAl,” ibid., p. 1245–1254.

    Google Scholar 

  31. F. H. Froes and D. Eylon, “Powder Metallurgy of Titanium Alloys — A Review,” to be published in the Proceedings of the Fifth International Conference on Titanium, Munich, West Germany, 1984.

  32. S. J. Savage and F. H. Froes, “Production of Rapidly Solidified Metals and Alloys,” J. Metals, 36(4) (1984), pp. 20–33.

    Google Scholar 

  33. P. R. Smith and F. H. Froes, “Developments in Titanium Metal Matrix Composites,” J. Metals, 36(3) (1984), pp. 19–26.

    Google Scholar 

  34. D. Eylon, J. A. Hall, C. M. Pierce, and D. L. Ruckle, “Microstructure and Mechanical Properties Relationships in the Ti-11 Alloy at Room and Elevated Temperatures,” Met. Trans. A, 7A (1976), pp. 1817–1826.

    Google Scholar 

  35. J. E. Hack and G. R. Leverant, “The Influence of Microstructure on the Susceptibility of Titanium Alloys to Internal Hydrogen Embrittlement,” Met. Trans. A, 13A (1982), pp. 1729–1738

    Article  Google Scholar 

  36. J. P. Hirth and F. H. Froes, “Interrelations Between Fracture Toughness and Other Mechanical Properties in Titanium Alloys,” Met. Trans. A, 8A (1977), pp. 1165–1176.

    Article  Google Scholar 

  37. D. Eylon and J. A. Hall, “Fatigue Behavior of Beta Processed Titanium Alloy IMI-685,” Met. Trans. A, 8A (1977), pp. 981–990.

    Article  Google Scholar 

  38. G. R. Yoder, L. A. Cooley, and T. W. Crooker, “50-Fold Difference in Region-II Fatigue Crack Propagation Resistance of Titanium Alloys: A Grain Size Effect,” J. Eng. Mat. Tech., 101 (1979), pp. 86–90.

    Article  Google Scholar 

  39. P. J. Postans and R. H. Jeal, “Titanium for Fuel Efficient Gas Turbines,” Titanium for Energy and Industrial Applications, edited by D. Eylon, TMS-AIME Publications, Warrendale, Pennsylvania 1982, pp. 183–197.

    Google Scholar 

  40. G. R. Yoder, L. A. Cooley, and T. W. Crooker, “A Comparison of Microstructural Effects on Fatigue-Crack Initiation and Propagation in Ti-6A1-4V,” Proceedings of the AIAA 23rd Structures, Structural Dynamics, and Materials Conference, 1982, New Orleans, Louisiana, pp. 132–136.

  41. I. W. Hall and C. Hammond, “In Situ Electron Microscope Observations of Crack Propagation,” Titanium and Titanium Alloys, Scientific and Technological Aspects, edited by J. C. Williams and A. F. Belov, Plenum Press, 1982, pp. 715–723.

  42. D. Eylon, “Faceted Fracture in Beta-Annealed Titanium Alloys,” Met. Trans. A, 10A, (1979), pp. 311–317.

    Article  Google Scholar 

  43. R. M. Duncan, R. E. Goosey, R. H. Jeal, and P. J. Postans, “Process Development and Evaluation of Gas Turbine Engine Components in IMI-829” Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izumi, TMS-AIME Publications, Warrendale, Pennsylvania, 1980, pp. 429–439.

    Google Scholar 

  44. P. J. Postans and R. H. Jeal, “The Influence of Forging Route and Heat Treatment on the Recrystallisation of a Commercial Titanium Alloy,” ibid., pp. 441–445.

    Google Scholar 

  45. A. Vassel, F. H. Froes, J. P. Herteman, D. Eylon, and A. Gazon, “Influence of Processing and Heat Treatment Variables on the Mechanical Properties of Two Advanced High Temperature Titanium Alloys,” to be published in the Proceedings of the Fifth International Conference on Titanium, Munich, West Germany, 1984.

  46. S. Fujishiro, F. H. Froes, T. Matsumoto, and D. Eylon, “Effect of Processing on the Mechanical Properties of IMI-829 Titanium Alloys,” to be published in the Proceedings of the Fifth International Conference on Titanium, Munich, West Germany, 1984.

  47. D. Eylon, M. E. Rosenblum, and S. Fujishiro, “High Temperature Low Cycle Fatigue Behavior of Near Alpha Titanium Alloys,” Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izumi, TMS-AIME Publications, Warrendale, Pennsylvania, 1980, pp. 1845–1854.

    Google Scholar 

  48. D. Eylon and M. E. Rosenblum, “Effects of Dwell High Temperature Low Cycle Fatigue of a Titanium Alloy,” Met. Trans. A, 13A (1982), pp. 322–324.

    Article  Google Scholar 

  49. C. L. Hoffman, D. Eylon, and A. J. McEvily, “The Influence of Microstructure on the Elevated Temperature Fatigue Resistance of a Titanium Alloy,” Low Cycle Fatigue and Life Prediction, edited by C. Amzallag, B. N. Leis, and P. Rabbe, ASTM STP 770, 1982, pp. 5–23.

  50. C. C. Chen and J. E. Coyne, “Relationships between Microstructure and Mechanical Properties in Ti-6Al-2Sn-4Zr-2Mo+0.1Si Alloy Forgings,” Titanium’ 80, Science and Technology, edited by H. Kimura and O. Izumi, TMS-AIME Publications, Warrendale, Pennsylvania, 1980, pp. 1197–1207.

    Google Scholar 

  51. D. McLean, “Deformation at High Temperature,” Met. Review, 7 (1962), pp. 481–527.

    Article  Google Scholar 

  52. A. W. Sommer, M. Creager, S. Fujishiro, and D. Eylon, “Texture Development in Alpha+Beta Titanium Alloys,” Titanium and Titanium Alloys Scientific and Technological Aspects, edited by J. C. Williams and A. F. Belov, Plenum Press, New York, 1982, pp. 1863–1874.

    Chapter  Google Scholar 

  53. O. D. Sherby and P. M. Burke, “Mechanical Behavior of Crystalline Solids at Elevated Temperature,” Progress in Materials Science, Vol. 13, Pergamon Press, New York, 1968.

    Google Scholar 

  54. M. T. Groves, “Environmental Protection to 922K (1200F) for Titanium Alloys,” NASA Report No. CR-134537, November 1973.

  55. S. Fujishiro and D. Eylon, “Improved High Temperature Mechanical Properties of Titanium Alloys by Ion Plating,” Thin Solid Films, 54 (1978), pp. 309–315.

    Article  Google Scholar 

  56. S. Fujishiro and D. Eylon, “Improvement of Ti Alloy High Cycle Fatigue by Pt Ion Plating,” Met. Trans. A, 11A, (1980), pp. 1259–1263.

    Article  Google Scholar 

  57. D. Eylon, R. K. Betts, and S. Fujishiro, “The Effect of Ion Plating on the Friction and Wear of Ti-6A1-4V Alloy,” Thin Solid Films, 73 (1980), pp. 323–329.

    Article  Google Scholar 

  58. V. G. Anderson and B. A. Manty, “Titanium Coatings for Ignition Test,” P&WA Report FR-155-94, October 1981.

  59. V. G. Anderson and M. E. Funkhouser, “Titanium Coating Ignition Test,” AFWAL-TR-81-2120, 1981.

  60. T. R. Strobridge, J.C. Moulder, and A. F. Clark, “Titanium Combustion in Turbine Engines,” Report Nos. FAA-RD-79-51 and NBSIR 79-1616, U.S. Dept. of Transportation, Federal Aviation Administration, July 1979, pp. 1–98.

  61. “Focus on Titanium,” published by TIMET Corporation, Vol. 9, No. 1, 1983, pp. 4–5.

  62. D. Eylon, F. H. Froes, and R. W. Gardiner, “Developments in Titanium Alloy Casting Technology,” J. Metals, 35(2) (1983), pp. 35–47.

    Google Scholar 

  63. P. Jette and A. W. Sommer, “Titanium for Automotive Racing,” Titanium for Energy and Industrial Applications, edited by D. Eylon, TMS-AIME Publications, Warrendale, Pennsylvania, 1981, pp. 199–216.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eylon, D., Fujishiro, S., Postans, P.J. et al. High-Temperature Titanium Alloys—A Review. JOM 36, 55–62 (1984). https://doi.org/10.1007/BF03338617

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03338617

Keywords

Navigation