Skip to main content
Log in

Bisphosphonates: Potential therapeutic agents for disease modification in osteoarthritis

  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Current treatments for osteoarthritis (OA) are mainly targeted towards providing short-term symptom relief. The focus in the development of disease-modifying drugs has been on therapies that modify cartilage directly. Recent research has highlighted the importance of subchondral bone as a target for therapeutic intervention and disease modification. At the subchondral level, affected joints have decreased bone mineral content and quality. In addition, increased bone turnover has been observed at levels similar to those in patients with osteoporosis. Consequently, the potential benefits of drugs that alter bone metabolism are being examined in this disease, in particular, the antiresorptive agents, bisphosphonates. Results from pre-clinical studies have shown promising results for these compounds. Although the mechanism of action remains unclear, comparative studies indicate that this activity may be unique to the specific structure of the bisphosphonate, rather than representative of a class effect. Clinical studies are now under way to determine the efficacy and safety of bisphosphonates which may offer new therapeutic options in the treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foss MVL, Byers PD. Bone density, osteoarthritis of the hip, and fracture of the upper end of the femur. Ann Rheum Dis 1972; 31: 259–64.

    Article  PubMed  CAS  Google Scholar 

  2. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop 1986; 213: 34–40.

    PubMed  Google Scholar 

  3. McCarthy C, Cushnaghan J, Dieppe P. The predictive role of scintigraphy in radiographic osteoarthritis of the hand. Osteoarthritis Cartilage 1994; 2: 25–8.

    Article  PubMed  CAS  Google Scholar 

  4. Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 1993; 52: 557–63.

    Article  PubMed  CAS  Google Scholar 

  5. Imhof H, Breitenseher M, Kainberger F, Trattnig S. Degenerative joint disease: cartilage or vascular disease? Skeletal Radiol 1997; 26: 398–403.

    Article  PubMed  CAS  Google Scholar 

  6. Felson DT, Chaisson CE, Hill CL, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134: 541–9.

    Article  PubMed  CAS  Google Scholar 

  7. Buckland-Wright JC, Macfarlane DG, Jasani MK, Lynch JA. Quantitative microfocal radiographic assessment of osteoarthritis of the knee from weight bearing tunnel and semiflexed standing views. J Rheumatol 1994; 21: 1734–41.

    PubMed  CAS  Google Scholar 

  8. Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 1998; 41: 891–9.

    Article  PubMed  CAS  Google Scholar 

  9. Kouri JB, Aguilera JM, Reyes J. Apoptotic chondrocytes from osteoarthrotic human articular cartilage and abnormal calcification of subchondral bone. J Rheumatol 2000; 27: 1005–19.

    PubMed  CAS  Google Scholar 

  10. Bailey AJ, Knott L. Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp Gerontol 1999; 34: 337–51.

    Article  PubMed  CAS  Google Scholar 

  11. Westacott CI, Webb GR, Warnock MG, Sims JV, Elson CJ. Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 1997; 40: 1282–91.

    PubMed  CAS  Google Scholar 

  12. Milz S, Putz R. Luckenbildung der subchondralen mineralisiervngszone des tibiaplateaus. Osteology 1994; 3: 110–8.

    Google Scholar 

  13. Antonaides L, Spector TD. Comparative epidemiology of osteoarthritis and osteoporosis. In Trevs R, Ed. Osteoarthritis and osteoporosis: what is the relationship? France: Expan Science Laboratories, 2002: 9–20.

    Google Scholar 

  14. Hannan MT, Anderson JJ, Zhang Y, Levy D, Felson DT. Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum 1993; 36: 1671–80.

    Article  CAS  Google Scholar 

  15. Nevitt MC, Lane NE, Scott JC, et al. Radiographic osteoarthritis of the hip and bone mineral density. The Study of Osteoporotic Fractures Research Group. Arthritis Rheum 1995; 38: 907–16.

    Article  CAS  Google Scholar 

  16. Zhang Y, Hannan MT, Chaisson CE, et al. Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham Study. J Rheumatol 2000; 27: 1032–7.

    PubMed  CAS  Google Scholar 

  17. Gotfredsen A, Riis BJ, Christiansen C, Rodbro P. Does a single local absorptiometric bone measurement indicate the overall skeletal status? Implications for osteoporosis and osteoarthritis of the hip. Clin Rheumatol 1990; 9: 193–203.

    CAS  Google Scholar 

  18. Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 1997; 12: 641–51.

    Article  PubMed  CAS  Google Scholar 

  19. Karvonen RL, Miller PR, Nelson DA, Granda JL, Fernandez-Madrid F. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol 1998; 25: 2187–94.

    PubMed  CAS  Google Scholar 

  20. Resnick D, Niwayama J. Diagnosis of bone and joint disorders, 2nd ed. Philadelphia: W.B. Saunders, 1988.

    Google Scholar 

  21. Buckland-Wright JC, Macfarlane DG, Lynch JA, Jasani MK, Bradshaw CR. Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann Rheum Dis 1995; 54: 263–8.

    Article  PubMed  CAS  Google Scholar 

  22. Cumming RG, Klineberg RJ. Epidemiological study of the relation between arthritis of the hip and hip fractures. Ann Rheum Dis 1993; 52: 707–10.

    Article  PubMed  CAS  Google Scholar 

  23. Dequeker J, Johnell O. Osteoarthritis protects against femoral neck fracture: the MEDOS study experience. Bone 1993; 14(Suppl 1): S51–6.

    Article  PubMed  Google Scholar 

  24. Arden NK, Nevitt MC, Lane NE, et al. Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Study of Osteoporotic Fractures Research Group. Arthritis Rheum 1999; 42: 1378–85.

    Article  CAS  Google Scholar 

  25. Arden NK, Griffiths GO, Hart DJ, Doyle DV, Spector TD. The association between osteoarthritis and osteoporotic fracture: the Chingford Study. Br J Rheumatol 1996; 35: 1299–304.

    Article  PubMed  CAS  Google Scholar 

  26. Hart DJ, Cronin C, Daniels M, Worthy T, Doyle DV, Spector TD. The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford Study. Arthritis Rheum 2002; 46: 92–9.

    Article  PubMed  Google Scholar 

  27. Campion GV, Delmas PD, Dieppe PA. Serum and synovial fluid osteocalcin (bone gla protein) levels in joint disease. Br J Rheumatol 1989; 28: 393–8.

    Article  PubMed  CAS  Google Scholar 

  28. Lohmander S. Concentrations of bone sialoprotein in joint fluid after knee injury. Transactions of the Second Combined Meeting of the Orthopaedic Research Societies of the USA, Japan, Canada and Europe, 1995: 75.

  29. Hellio P, Vignon E. Comparison of urinary levels of pyridinoline and deoxypyridinoline in patients with gonarthrosis, coxarthrosis and polyarticular osteoarthritis: a cross-sectional study. The Transactions of 41st Annual Meeting of ORS, Orlando, FL. Vol. 20, Section 2: 403.

  30. Bettica P, Cline G, Hart DJ, Meyer J, Spector TD. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum 2002; 46: 3178–84.

    Article  PubMed  Google Scholar 

  31. Thompson PW, Spector TD, James IT, Henderson E, Hart DJ. Urinary collagen crosslinks reflect the radiographic severity of knee osteoarthritis. Br J Rheumatol 1992; 31: 759–61.

    Article  PubMed  CAS  Google Scholar 

  32. Hunter DJ, Hart D, Snieder H, Bettica P, Swaminathan R, Spector TD. Evidence of altered bone turnover, vitamin D and calcium regulation with knee osteoarthritis in female twins. Rheumatology 2003; 43: 1–6.

    Google Scholar 

  33. Kamibayashi L, Wyss UP, Cooke TD, Zee B. Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis. Calcif Tissue Int 1995; 57: 69–73.

    Article  PubMed  CAS  Google Scholar 

  34. Kamibayashi L, Wyss UP, Cooke TD, Zee B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 1995; 17: 27–35.

    Article  PubMed  CAS  Google Scholar 

  35. Lin JT, Lane JM. Bisphosphonates. J Am Acad Orthop Surg 2003; 11: 1–4.

    PubMed  Google Scholar 

  36. Coleman RE. Bisphosphonates for the prevention of bone metastases. Semin Oncol 2002; 29(Suppl 21): 43–9.

    Article  PubMed  CAS  Google Scholar 

  37. Fujita T, Fujii S. Therapeutic effects of etidronate-2-sodium (EHDP) on osteoarthritis of spine and osteoarthrosis. J New Remedies and Clinics 1997; 46: 92–102.

    Google Scholar 

  38. Bendele AM, Hulman JF. Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum 1988; 31: 561–5.

    Article  PubMed  CAS  Google Scholar 

  39. Meyer JM, Dansereau SM, Farmer RW, Jeans GL, Prenger MC. Bisphosphonates structurally similar to risedronate (actonel) slow disease progression in the guinea pig model of primary osteoarthritis. Arthritis Rheum 2001; 44(95): 1527.

    Google Scholar 

  40. Meyer JM, Farmer RW, Prenger MC. Risedronate but not alendronate slows disease progression in the guinea pig model of primary osteoarthritis J Bone Miner Res 2001; 16(1S): S305.

    Google Scholar 

  41. Myers SL, Brandt KD, Burr DB, O’Connor BL, Albrecht M. Effects of a bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. J Rheumatol 1999; 26: 2645–53.

    PubMed  CAS  Google Scholar 

  42. Muehleman C, Green J, Williams JM, Kuettner KE, Thonar EJ, Sumner DR. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartilage 2002; 10: 226–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim D. Spector Prof. T.D. Spector.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spector, T.D. Bisphosphonates: Potential therapeutic agents for disease modification in osteoarthritis. Aging Clin Exp Res 15, 413–418 (2003). https://doi.org/10.1007/BF03327362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327362

Keywords

Navigation