Skip to main content
Log in

Whey as a substrate for generation of bioelectricity in microbial fuel cell using E.coli

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

While oil prices raise and the supply remains unsteady, it may be beneficial to use the high content of energy available in food processing wastes, such as cheese whey waste, by converting it to bioenergy. As well, there have been many new waste biotreatment technologies developed recently, which may well be used directly to food processing wastes. Microbial fuel cell represents a new technology for simultaneous use of waste materials and bioelectricity generation. In this study, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with mediators. E.coli was able to use the carbohydrate found in whey to generate bioelectricity. The open-circuit voltage in absence of mediator was 751.5mV at room temperature. The voltage was stable for more than 24 h. Riboflavin and humic acid were used as conceivable mediators. The results showed that humic acid was a few times more effective than Riboflavin. Additionally, four chemicals employed as catholyte. Based on polarization curve, FeCl3 (III) was the best. Maximum power generation and current were 324.8 μW and 1194.6μA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. M.; Bennetto, H. P., (1993). Microbial Fuel-Cells: electricity production from carbohydrates. Appl. Biochem. Biotech., 39–40(1), 27–40 (14 pages).

    Article  Google Scholar 

  • Beveridge, T. J., (2004). Composition, reactivity, and regulation of extracellular metal-reducing structures (bacterial nanowires) produced by dissimilatory metal reducing bacteria. 01 June. University of Guelph, 1–3 (3 pages).

  • Bond, D. R.; Lovley, D. R., (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microb., 69(3), 1548–1555 (8 pages).

    Article  CAS  Google Scholar 

  • Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R., (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Sci., 295(5554), 483–485 (3 pages).

    Article  CAS  Google Scholar 

  • Chae, K. J.; Choi, M. J.; Lee, J. W.; Kim, K. Y.; kim, I. S., (2009). Effect of different substrates on the performance, bacterial diversity and bacterial viability in microbial fuel cells. Bioresour. Tech., 100(14), 3518–3525 (8 pages).

    Article  CAS  Google Scholar 

  • Chae, K. J.; Choi, M.; Ajayi, F. F.; Park, W.; Chang, I. S.; Kim, I. S., (2008). Mass transport through a proton exchange membrane (Nafion) in microbial fuel cell. Energy and Fuels., 22(1), 169–176 (8 pages).

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K.; Lovley, D. R., (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotech., 21, 1229–1232 (4 pages).

    Article  CAS  Google Scholar 

  • Chien, M. K.; Shih, L. H., (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int. J. Environ. Sci. Tech., 4(3), 383–394 (12 pages).

    Google Scholar 

  • Gil, G. C.; Chang, I. S.; Kim, B. H.; Kim, M.; Jang, J. K.; Park, H. S.; Kim, H. J., (2003). Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosen. Bioelectro., 18(4), 327–338 (12 pages).

    Article  CAS  Google Scholar 

  • Goho, A., (2004 ). Special treatment: Fuel cell draws energy from waste. Science News Web. http://www.sciencenews.org/articles/20040313/fob5.asp.

  • Hernandez, M. E.; Kappier, A.; Newman, D. K., (2004). Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol., 79(2), 921–928 (8 pages).

    Article  Google Scholar 

  • Jang, J. K.; Pham, T. H.; Chang, I. S.; Kang, K. H.; Moon, H.; Cho, K. S.; Kim, B. H., (2004). Construction and operation of a novel mediator and membrane-less microbial fuel cell. Process. Biochem., 39(8), 1007–1012 (6 pages).

    Article  CAS  Google Scholar 

  • Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H., (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians. Enz. Microb. Tech., 30(2), 145–152 (8 pages).

    Article  CAS  Google Scholar 

  • Kim, B. H.; Park, D. H.; Shin, P. K.; Chang, I. S.; Kim, H. J., (1999). Mediator-less biofuel cell. U.S. Patent., 5976719 (18 pages).

  • Liu, H.; Ramnarayanan, R.; Logan, B. E., (2004). Production of electricity during waste-water treatment using a single chamber microbial fuel cell. Environ. Sci. Tech., 38(7), 2281–2285 (5 pages).

    Article  CAS  Google Scholar 

  • Logan, B. E., (2004). Extracting hydrogen and electricity from renewable resources. Environ. Sci. Tech., 38(9), 160A–167A (8 pages).

    Article  CAS  Google Scholar 

  • Logan, B. E., (2005). Simultaneous wastewater treatment and biological electricity generation. Water. Sci. Tech., 52(1–2), 31–37 (7 pages).

    CAS  Google Scholar 

  • Min, B.; Logan, B. E., (2004). Continuous electricity generation from domestic waste-water and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Tech., 38(21), 5809–5814 (6 pages).

    Article  CAS  Google Scholar 

  • Oh, S. E.; Min, B.; Logan, B. E., (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Tech., 38(18), 4900–4904 (5 pages).

    Article  CAS  Google Scholar 

  • Park, D. H.; Laivenieks, M.; Guettler, M. V.; Jain, M. K.; Zeikus, J. G., (1999). Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol., 65(7), 2912–2917 (6 pages).

    CAS  Google Scholar 

  • Park, D. H.; Zeikus, J. G., (1999). Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol., 181, 2403–2410 (8 pages).

    CAS  Google Scholar 

  • Perkins, S., (2002). Voltage from the bottom of the sea: Ooze-dwelling microbes can power electronics. Science News Web. http://www.sciencenews.org/articles/20020713/fob5.asp.

  • Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W., (2005a). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Tech., 39(9), 3401–3408 (8 pages).

    Article  CAS  Google Scholar 

  • Rabaey, K.; Verstraete, W., (2005b). Microbial fuel cells: novel biotechnology for energy generation. Trends. Biotech., 23, 291–298 (8 pages).

    Article  CAS  Google Scholar 

  • Rabaey, K.; Boon, N.; Siciliano, S. D.; Verhaege, M.; Verstraete, W., (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 70(9), 5373–5382 (10 pages).

    Article  CAS  Google Scholar 

  • Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R., (2005). Extracellular electron transfer via microbial nanowires. Nature., 435, 1098–1101 (4 pages).

    Article  CAS  Google Scholar 

  • Suzuki, S.; Karube, I.; Matsunaga, T., (1978). Application of a biochemical fuel cell to wastewaters. Biotech. Bioeng. Sympo., 8, 501–511 (11 pages).

    Google Scholar 

  • Thomas, L. C.; Chamberlin, G. J., (1980). Colorimetric Chemical Analytical Methods, 9rd. Ed. The Tintometer Ltd, Salisbury. UK. (625 pages).

    Google Scholar 

  • Venkata Mohan, S.; Saravanan, R.; Veer Raghuvulu, S.; Mohanakrishna, G.; Sarma, P. N., (2008). Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour. Tech., 99, 596–603 (8 pages).

    Article  CAS  Google Scholar 

  • Venkata Mohan, S.; Veer Raghuvulu, S.; Srikanth, S.; Sarma, P. N., (2007). Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr. Sci., 92(12), 1720–1726 (7 pages).

    Google Scholar 

  • Voggu, L.; Schlag, S.; Biswas, R.; Rosenstein, R.; Rausch, C.; Gotz, F., (2006). Microevolution of cytochrome bd oxidase in Staphylococci and its implication in resistance to respiratory toxins release by Psuedomonas. J. Bacteriol., 188(23), 8079–8086 (8 pages).

    Article  CAS  Google Scholar 

  • Wingard, L. B. J.; Shaw, C H.; Castner, J. F., (1982) Bioelectrochemical fuel cells. Enz. Microb. Tech., 4(3), 137–142 (6 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nasirahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasirahmadi, S., Safekordi, A.A. Whey as a substrate for generation of bioelectricity in microbial fuel cell using E.coli . Int. J. Environ. Sci. Technol. 8, 823–830 (2011). https://doi.org/10.1007/BF03326265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326265

Keywords

Navigation