Skip to main content
Log in

Potential of natural bed soil in adsorption of heavy metals in industrial waste landfill

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Development of higher welfare could not be realized unless by energy consumption and other natural resources. Growth of industrial complexes has shown an unprecedented trend during recent years. Many of these towns have no treatment systems for the industrial wastes leachates. Besides, the chemical composition of wastes in such complexes varies considerably due to the different kinds of industries. It is endeavored in the present work to study the natural potential of soil to treat leachate of such industrial wastes. For this purpose, the Aliabad industrial complex in Tehran — Garmsar road was selected as the study area. The potential of adsorption of elements such as nickel, copper, cadmium, zinc, chromium, lead and manganese was investigated. The results indicated that the soil potential to adsorb heavy metals (except for manganese) was very high (95 %) in the adsorption of heavy metals (except for manganese). Further, chemical partitioning studies revealed that heavy metals are associated with various soil phases such as loosely bonded ions, sulfide and organics to various extents. Among the mentioned soil phases, one can deduce that major portion of metal contaminants is absorbed as loosely bonded ions. Organic bond and sulfide bond are in the 2nd and 3rd positions of metal contaminants adsorption, respectively. The results of the present study apparently showed that soil column had ample capacity to adsorb metal contaminants. Thus, determination of soil potential in adsorption of heavy metals during site selection is as important criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Khashman, O. A., (2004). Heavy metal distribution in dust, street dust and soil from the work place in Karak Industrial Estate, Jordan Atmos. Environ., 38(39), 6803–6812 (10 pages).

    Article  CAS  Google Scholar 

  • Allen, A. R., (2001). Containment landfills: The myth of sustainability. J. Eng. Geol., 60(1–4), 3–19 (17 pages).

    Article  Google Scholar 

  • Aucott, M., ( 2006 ). The fate of heavy metals in landfills: A Review. Prepared for the industrial ecology, pollution prevention and the NY-NJ harbor. Project of the New York Academy of Sciences.

  • Bagchi, A., (1989). Design, construction and monitoring of sanitary landfills. John Wiley and Sons, New York.

    Google Scholar 

  • Banat, K. M.; Howari, F. M.; Al-Hamad, A. A., (2005). Heavy metals in urban soils of central jordan: Should we worry about their environmental risks? Environ. Res., 97(3), 258–273 (16 pages).

    Article  CAS  Google Scholar 

  • Barrett, A.; Lawlor, J., (1995). The economics of waste management in ireland. Economic and Social Research Institute, Dublin.

    Google Scholar 

  • Bulut, Y.; Baysal, Z., (2006). Removal of Pb (II) from wastewater using wheat bran. J. Environ. Manage., 78(2), 107–113 (7 pages).

    Article  CAS  Google Scholar 

  • Charlesworth, S.; Everett, M.; McCarthy, R.; Ordonez, A.; De Miguel, E., (2003). A comparative study of heavy metals concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and coventry, west midlands, UK. Environ. Int., 29(5), 563–573 (11 pages).

    Article  CAS  Google Scholar 

  • Chen, T. B.; Zheng, Y. M.; Lei, M.; Huang, Z. C.; Wu, H. T.; Chen, H.; Fan, K. K.; Yu, K.; Wu, X.; Tian, Q. Z., (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551 (10 pages).

    Article  CAS  Google Scholar 

  • Cheng, Z.; Zheng, Y.; Mortlock, R.; Van Geen, A., (2004). Rapid multi-element analysis of groundwater by high-resolution inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem., 379 (3), 512–518 (7 pages).

    Google Scholar 

  • Christensen, T. H.; Kjeldsen, P.; Bjerg, P. L.; Jensen, D. L.; Christensen, J. B.; Baun, A.; Albrechtsen, H. J.; Heron, G., (2001). Biogeochemistry of landfill leachate plumes. Appl. Geochem., 16(7–8), 659–718 (59 pages).

    Article  CAS  Google Scholar 

  • EPA, (1992a). Integrated risk information system (IRIS). National centre for environmental assessment, Office of research and development, United State Environmental Protection Agency, Washington D.C.

    Google Scholar 

  • EPA, (1992b). Flame atomic absorption spectrophotometry. Environmental Protection Agency. Revision 2.

  • EPA, (2007). Acid digestion of aqueous samples and extracts for total metals for analysis by FLAA or ICP Spectroscopy. Environmental Protection Agency. Method # 3010A, Revision 1.

  • Fang, H. Y., (1995). Bacteria and tree root attack on liners, in: Sarby, R. W., (Ed.), Composition of leachate from waste disposal sites. Waste disposal by landfill: Green ’93 - Proceedings of a symposium on Geotechnics Related to the European Environment, Bolton, UK, Balkema, Rotterdam, 215–221 (7 pages).

  • Fatta, D.; Papadopoulos, A.; Loizidou, M., (1999). A Study on the landfill leachate and it’s impact on the ground water quality of the greater area. Environ. Geochem. Hlth., 21(2), 175–190 (16 pages).

    Article  CAS  Google Scholar 

  • Freeze, R. A.; Cherry, J. A., (1979). Ground Water. Prentice - Hall Inc., 604.

  • Futta, D.; Yoscos, C.; Haralambous, K. J.; Loizidou, M., (1997). An assessment of the effect of landfill leachate on groundwater quality. 6th. Int. landfill symposium. S. Margherita di Pule, Gagliari, Italy. 181–187 (7 pages).

    Google Scholar 

  • Gharaibeh, S. H.; Masad, A., (1989). Die problomatite der ahallbeseitingung in Jordan. Fallstudie fur enstasicklungs lander. Wasser und Boden, 10, 620–622 (3 pages).

    Google Scholar 

  • Karbassi, A. R.; Monavari, S. M.; Bidhendi, G. R. N.; Nouri, J.; Nematpour, K., (2008). Metal pollution assessment of sediment and water in the Shur River. Environ. Monitor. Assess., 147(1–3), 107–116 (10 pages).

    Article  CAS  Google Scholar 

  • Langston, W., (1990). Toxic effects of metals and the incidence of metal pollution in marine coastal ecosystem, in: Furness, R. W.; Rainbow P. S., (Eds.), Heavy metals in the marine environment, Boca Raton. CRC Press Inc. 101–122 (22 pages).

    Google Scholar 

  • Lee, G. F.; Jones L. A., (1993). Groundwater pollution by municipal landfills: Leachate composition, detection and water quality significance, Proc. Sardinia ’93 IV International Landfill Symposium, Sardinia, Italy, 1093–1103 (11 pages).

    Google Scholar 

  • Lee, G. F.; Jones, R. A.; Ray, C., (1986). Sanitary landfill leachate recycle. Biocycle., 27(1), 36–38 (3 pages).

    CAS  Google Scholar 

  • Lewis, R. J., (1991). Hazardous chemicals desk reference, 2nd. Eds., Van Nostrand Reinhold, New York, USA, 1–71 (71 pages).

    Google Scholar 

  • Longe, E. O.; Enekwechi, L. O., (2007). Investigation on potential groundwater impacts and influence of local hydrology on natural attenuation of leachate at a municipal landfill. Int. J. Environ. Sci. Tech., 4(1), 133–140 (8 pages).

    Article  CAS  Google Scholar 

  • Low, K. S.; Lee, G. K.; Liew, S. C., (2000). Sorption of cadmium and lead from aqueous solutions by spent grain. Proc. Biochem., 36(1), 59–64 (6 pages).

    Article  CAS  Google Scholar 

  • Mahvi, A. H., (2008). Application of agricultural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Tech., 5(2), 275–285 (11 pages).

    Article  CAS  Google Scholar 

  • Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industries wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (8 pages).

    CAS  Google Scholar 

  • Nameni, M.; Alavi Moghadam, M. R.; Arami, M., (2008). Adsorption of hexavalent chromium from aqueoussolutions by wheat bran. Int. J. Environ. Sci. Tech., 5(2), 161–168 (8 pages).

    Article  CAS  Google Scholar 

  • Nouri, J.; Mahvi, A. H.; Jahed, G. R.; Babaei, A. A., (2008). Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ. Geol. 55(6), 1337–1343 (7 pages).

    Article  CAS  Google Scholar 

  • Okafor, E. Ch.; Opuene, K., (2007). Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ. Sci. Tech., 4(2), 233–240 (8 pages).

    CAS  Google Scholar 

  • Panjeshahi, M. H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech., 5(2), 251–262 (12 pages).

    Article  Google Scholar 

  • Pekey, H., (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar. Pollut. Bull., 52(10), 1197–1208 (12 pages).

    Article  CAS  Google Scholar 

  • Qasim, S. R.; Chiang, W., (1994). Sanitary landfill leachate. CRC Press.

  • Suthar, S.; Singh, S., (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and perionyx sansibaricus). Int. J. Environ. Sci. Tech., 5(1), 99–106 (8 pages).

    Article  CAS  Google Scholar 

  • Vasanthi, P.; Kaliappan, S.; Srinivasaraghavan, R., (2008). Impact of poor solid waste management on ground water. Environ. Monit. Assess., 143(1–3), 227–238 (11 pages).

    Article  CAS  Google Scholar 

  • Zheng, C.; Bennett, G. D.; Andrews, C. B., (1991). Analysis of groundwater remedial alternatives of a superfund site. Groundwater, 29(6), 838–848 (11 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Esmaeili Bidhendi M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidhendi, M.E., Karbassi, A.R., Baghvand, A. et al. Potential of natural bed soil in adsorption of heavy metals in industrial waste landfill. Int. J. Environ. Sci. Technol. 7, 545–552 (2010). https://doi.org/10.1007/BF03326163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326163

Keywords

Navigation