Skip to main content
Log in

Gait reveals bilateral adaptation of motor control in patients with chronic unilateral stroke

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims: Functional brain imaging has shown that bilateral brain reorganization may occur after unilateral cerebral damage. The present study searched for evidence of bilateral motor control changes in gait in patients with chronic unilateral stroke. Methods: Gait variables (temporal and spatial parameters, footprint peak times (FPPT) and footfall times (FFT)) were recorded in 48 patients with chronic unilateral stroke at their preferred speed, and in 10 healthy volunteers walking from very slowly to very fast on a pressure sensor walkway. The data were divided into 4 groups according to gait velocity. The functional outcome of stroke was measured by the Barthel Index. Results: Patients’ gait variables reflected their hemiparetic gait pattern. Slower patients had prolonged stance, FPPT and FFT on the non-affected side (NS), and prolonged swing and shorter FPPT and FFT on the affected side (AS). The magnitude of the asymmetry index of these parameters was inversely associated with velocity performance and, at the same time, it characterized how much the control of the clinically healthy (NS) side was altered during walking. Bilateral changes in kinetic and footfall variables in the chronic stage of unilateral stroke were present. Conclusions: Patients chose their preferred walking velocity using stereotyped, alternative gait patterns, in which the contribution of the NS was larger than that of the AS. Alternative gait patterns may partly demonstrate compensatory behavioral strategies adapted by patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monakow CV. Die Lokalisation im Grosshirn und der Abbau der Funktion durch Kortikale Herde. Wiesbaden: Bergman, 1914.

    Google Scholar 

  2. Luria AR. Restoration of function after brain injury. Oxford: Pergamon Press, 1963.

    Google Scholar 

  3. Rothi LJ, Horner J. Restitution and substitution: two theories of recovery with application to neurobehavioral treatment. J Clin Neuropsychol 1983; 5: 73–81.

    Article  PubMed  CAS  Google Scholar 

  4. Nudo RJ. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. Rehabil Med 2003; 41 (Suppl): 7–10.

    Article  Google Scholar 

  5. Gresham GE. Stroke outcome research. Stroke 1986; 17: 358–60.

    Article  PubMed  CAS  Google Scholar 

  6. Kwakkel G, Wagenaar RC. Effect of duration of upper- and lower-extremity rehabilitation sessions and walking speed on recovery of interlimb coordination in hemiplegic gait. Phys Ther 2002; 82: 432–48.

    PubMed  Google Scholar 

  7. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 2003; 34: 2181–6.

    Article  PubMed  Google Scholar 

  8. Formisano R, Pantano P, Buzzi MG, et al. Late motor recovery is influenced by muscle tone changes after stroke. Arch Phys Med Rehabil 2005; 86: 308–11.

    Article  PubMed  Google Scholar 

  9. Goldstein LB, Davis JN. Restorative neurology. Drugs and recovery following stroke. Stroke 1990; 25: 19–24.

    Google Scholar 

  10. Bach-y-Rita P. Central neuron system lesions: sprouting and unmasking in rehabilitation. Arch Phys Med Rehabil 1981; 62: 413–7.

    PubMed  Google Scholar 

  11. Peurala SH, Tarkka IM, Pitkanen K, Sivenius J. The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil 2005; 86: 1557–64.

    Article  PubMed  Google Scholar 

  12. Marks M, Hirschberg G. Analysis of the hemiparetic gait. Ann NY Acad Sci 1958; 74: 59–77.

    Article  PubMed  CAS  Google Scholar 

  13. Knutsson E, Richard C. Different types of disturbed motor control in gait of hemiparetic patients. Brain 1979; 102: 405–30.

    Article  PubMed  CAS  Google Scholar 

  14. Olney SJ, Richards C. Hemiparetic gait following stroke. Part I. Characteristics. Gait & Posture 1996; 4: 136–48.

    Article  Google Scholar 

  15. Lamontagne A, Richards CL, Malouin F. Coactivation during gait as an adaptive behaviour after stroke. J Electromyogr Kinesiol 2000; 10: 407–15.

    Article  PubMed  CAS  Google Scholar 

  16. Andriacchi TP, Ogle JA, Galante JO. Walking speed as a basis for normal and abnormal gait measurements. Biomech 1977; 10: 261–8.

    Article  CAS  Google Scholar 

  17. Wagenaar RC, Beek WJ. Hemiplegic gait: a kinematic analysis using walking speed as a basis. J Biomech 1992; 25: 1007–15.

    Article  PubMed  CAS  Google Scholar 

  18. Goldie PA, Matyas TA, Galea KGJ, Galea MP, Evans OM, Bach TM. Prediction of gait velocity in ambulatory stroke patients during rehabilitation. Arch Phys Med Rehabil 1999; 80: 415–20.

    Article  PubMed  CAS  Google Scholar 

  19. Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke: outcome assessment and sample size requirements. Stroke 1992; 23: 1084–9.

    Article  PubMed  CAS  Google Scholar 

  20. Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil 2002; 83: 1629–37.

    Article  PubMed  Google Scholar 

  21. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992; 31: 463–72.

    Article  PubMed  CAS  Google Scholar 

  22. Netz J, Lammers T, Homberg V. Reorganization of motor output in the non-affected hemisphere after stroke. Brain 1997; 120: 1579–86.

    Article  PubMed  Google Scholar 

  23. Titianova EB, Pitkänen K, Pääkkönen A, Sivenius J, Tarkka IM. Gait characteristics and functional ambulation profile in patients with chronic unilateral stroke. Am J Phys Med Rehabil 2003; 82: 778–86.

    Article  PubMed  Google Scholar 

  24. Titianova EB, Mateev PS, Peurala SH, Sivenius J, Tarkka IM. Footprint peak times and functional ambulation profile reflect the potential for hemiparetic gait recovery. Brain Injury 2005; 19: 623–31.

    Article  PubMed  Google Scholar 

  25. Titianova E, Tarkka IM. Asymmetry in walking performance and postural sway in patients with chronic unilateral infarction. J Rehabil Res Dev 1995; 32: 236–44.

    PubMed  CAS  Google Scholar 

  26. Mahoney FI, Barthel R. Functional evaluation: the Barthel index. MD State Med J 1965; 14: 61–5.

    PubMed  CAS  Google Scholar 

  27. Titianova EB, Mateev PS, Tarkka IM. Footprint analysis of gait using a pressure sensor system. J Electromyogr Kinesiol 2004; 14: 275–81.

    Article  PubMed  Google Scholar 

  28. Roth EJ, Merbitz C, Mroczek K, Dugan SA, Suh WW. Hemiplegic gait. Relationships between walking speed and other temporal parameters. Am J Phys Med Rehabil 1997; 76: 128–33.

    Article  CAS  Google Scholar 

  29. Hesse SA, Jahnke MT, Schreiner C, Mauritz KH. Gait symmetry and functional walking in hemiparetic patients prior to and after a 4-week rehabilitation programme. Gait Posture 1993; 1: 166–71.

    Article  Google Scholar 

  30. Latash ML, Anson JG. What are “normal movements” in atypical populations? Behav Brain Sci 1996; 19: 55–106.

    Article  Google Scholar 

  31. Dietz V. Human neuronal control of autonomic functional movements: interaction between central programs and afferent input. Physiol Rev 1992; 72: 333–69.

    Google Scholar 

  32. MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther 2002; 82: 69–83.

    PubMed  Google Scholar 

  33. Dimitrijevic MR, Persy I, Forstner C, Kern H, Dimitrijevic MM. Motor control in the human spinal cord. Artif Organs 2005; 29: 216–9.

    Article  PubMed  Google Scholar 

  34. Nadeau S, Arsenault AB, Bertrand P, Gravel D, Bourbonnais D. Analysis of the clinical factors determining natural and maximal gait speed in adults with a stroke. Am J Phys Med Rehabilil 1999; 78: 123–30.

    Article  CAS  Google Scholar 

  35. Hesse S, Luecke D, Jahnke MT, Mauritz KH. Gait function in spastic hemiparetic patients walking barefoot, with firm shoes, and with ankle-foot orthosis. Int J Rehabil Res 1996; 19: 133–41.

    Article  PubMed  CAS  Google Scholar 

  36. Feydy A, Carlier R, Roby-Brami A, et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 2002; 33: 1610–7.

    Article  PubMed  CAS  Google Scholar 

  37. Butefisch CM, Kleiser R, Korber B, et al. Recruitment of contralesional motor cortex in stroke patients with recovery of hand function. Neurology 2005, 64: 1067–9.

    Article  PubMed  CAS  Google Scholar 

  38. Mauritz KH. Gait training in hemiplegia. Eur J Neurol 2002; 9 (Suppl 1): 23–9.

    Article  PubMed  Google Scholar 

  39. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci 2004; 22: 281–99.

    PubMed  Google Scholar 

  40. Peurala SH, Titianova EB, Mateev P, Pitkanen K, Sivenius J, Tarkka IM. Gait characteristics after gait-oriented rehabilitation in chronic stroke. Restor Neurol Neurosci 2005; 23: 57–65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina M. Tarkka PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titianova, E.B., Peurala, S.H., Pitkänen, K. et al. Gait reveals bilateral adaptation of motor control in patients with chronic unilateral stroke. Aging Clin Exp Res 20, 131–138 (2008). https://doi.org/10.1007/BF03324759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324759

Keywords

Navigation