Skip to main content
Log in

Modulation of free radicals and superoxide dismutases by age and dietary restriction

  • Original Articles
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Reducing dietary intake has been shown to be the most effective means for modulating aging processes in laboratory rodents. Dietary restriction has also been shown to be a modulator of membrane lipid peroxidation and cytosolic antioxidant status. In the present study, anti-radical action of dietary restriction was investigated further by quantitating the formation of the superoxide radical, hy- droxyl radical and hydrogen peroxide by liver microsomes from rats of various ages. The results show that the ad libitum fed group maintained a higher production of superoxide and hydroxyl radicals when compared to the food restricted group of the same age. Hydrogen peroxide formation followed the same trend but was statistically greater only at 3 and 6 months of age. The food restricted group tended to show a higher superoxide dismutase (SOD) activity in both cytosolic and mitochondrial fractions than ad libitum fed controls. These data indicate that the free radical activity observed in the liver microsomes of ad libitum fed rats can be attenuated by dietary restriction, thereby providing a possible biochemical mechanism for its anti- lipoxidative action on membrane lipid peroxidation as reported in an earlier study. This action may in part underlie the life span- prolonging action of food restriction. (Aging 2:357–362,1990)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harman D.: The aging process. Proc. Natl. Acad. Sci. USA 78: 7124–7128,1981.

    Article  PubMed  CAS  Google Scholar 

  2. Pryor W.A.: Free radicals in antioxidation and in aging. In: Armstrong D., Sohal R.S., Cutler R.G., Slater T.F. (Eds.), Free Radicals in Molecular Biology, Aging, and Disease. Raven Press, New York, 1984, pp. 13–41.

    Google Scholar 

  3. Halliwell B., Gutteridge M.C.: Oxygen toxicity, oxygen radical, transition metals and disease. Biochem. J. 219: 1–14, 1984.

    PubMed  CAS  Google Scholar 

  4. Slater T.F.: Free radical mechanism in tissue injury. Biochem. J. 222: 1–15, 1984.

    PubMed  CAS  Google Scholar 

  5. Sawada M., Carlson J.C.: Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech. Ageing Dev. 41: 125–138, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Nohl H., Hegner D.: Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82: 563–567, 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Cand F., Verdetti J.: Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rats. Free Radic. Biol. Med. 7: 59–63,1989.

    Article  PubMed  CAS  Google Scholar 

  8. Yu B.P., Lee D.W., Marler C.G., Choi J.H.: Mechanism of food restriction: Protection of cellular homeostasis. Proc. Soc. Exp. Biol. Med. 193: 13–15, 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Chipalkatti S., Ajit K., Anant D., Aiyar S.: Effect of diet restriction on some biochemical parameters related to aging in mice. J. Nutr. 113: 944–950, 1983.

    PubMed  CAS  Google Scholar 

  10. Koizumi A., Weindruch R., Walford R.L.: Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice. J. Nutr. 117: 361–367, 1987.

    PubMed  CAS  Google Scholar 

  11. Chen L.H., Lowry S.R.: Cellular antioxidant defense system. In: Snyder D.L. (Ed.), Dietary Restriction and Aging. Alan R. Liss, Inc., New York, 1989, pp. 247–256.

    Google Scholar 

  12. Semsei L., Rao G., Richardson A.: Changes in the expression of superoxide dismutase and catalase as a function of age and dietary restriction. Biochem. Biophys. Res. Commun. 164: 620–625,1989.

    Article  PubMed  CAS  Google Scholar 

  13. Yu B.P., Masoro E.J., McMahan C.A.: Nutritional influences on aging of Fischer-344 rats. I. Physical, metabolic, and longevity characteristics. J. Gerontol. 40: 657–770, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Laganiere S., Yu B.P.: Anti-lipoperoxidation action of food restriction. Biochem. Biophys. Res. Commun. 145: 1185–1191, 1987.

    Article  PubMed  CAS  Google Scholar 

  15. O’Brien P.J.: Superoxide production by rat liver microsomes using partially succinoylated cytochrome c. In: Packer L. (Ed.), Methods in Enzymology. Academic Press, New York, 1984, Vol. 105, pp. 375–376.

    Google Scholar 

  16. Kuthan H., Ullrich V.: A quantitative test for superoxide radicals produced in biological systems. Bio-chem. J. 203: 551–558, 1982.

    CAS  Google Scholar 

  17. Halliwell B., Grootveld M., Gutteridge J.M.C.: Methods for the measurement of hydroxyl radicals in biochemical systems: Deoxyribose degradation and aromatic hydrbxylation. In: Glick D. (Ed.), Methods of Biochemcal Analysis. John Wiley & Sons, New York, 1988, Vol. 33, pp. 59–90.

    Chapter  Google Scholar 

  18. Thurman R.G., Ley H.G., Scholz R.: Hepatic microsomal ethanol oxidation. Eur. J. Biochem. 25: 420- 430,1972.

    Article  PubMed  CAS  Google Scholar 

  19. McCord J.M., Fridovich I.: Superoxide dismutase: An enzymatic function for erythrocuprein (hemocu- prein). J. Biol. Chem. 244: 6049–6055, 1969.

    PubMed  CAS  Google Scholar 

  20. Lowry O.H., Rosenbrough N.J., Farr L.A., Randall R.S.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  21. Laganiere S., Yu B.P.: Effect of chronic food restriction in aging rats. 1. Liver subcellular membranes. Mech. Ageing Dev. 48: 207–219, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Laganiere S., Yu B.P.: Effect of chronic food restriction in aging rats. II. Liver cytosolic antioxidants and related enzymes. Mech. Ageing Dev. 48: 221–230, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Floyd R.A., Zaleska M.M., Harmon H.J.: Possible involvement of iron and oxygen free radicals in aspects of aging in brain. In: Armstrong D., Sohal R., Cutler R.G., Slater T.E. (Eds.), Free Radicals in Molecular Biology, Aging, and Disease. Raven Press, New York, 1984, pp. 143–161.

    Google Scholar 

  24. Mehlhorn R.J., Cole G.: The free radical theory of aging: A critical review. In: Pryor W.A. (Ed.), Advances in Free Radical Biology and Medicine. Pergamon Press, New York, 1985, pp. 165–223.

    Google Scholar 

  25. Cutler R.G.: Antioxidants, aging, and longevity. In: Pryor W.A. (Ed.), Free Radicals in Biology. Academic Press, Orlando, 1984, Vol. IV, pp. 371–428.

    Google Scholar 

  26. Weindruch R., Walford R.L.: The Retardation of Aging and Disease by Dietary Restriction. Charles C. Thomas Publisher, Springfield, 1988, pp. 237–260.

    Google Scholar 

  27. Kim J.W., Yu B.P.: Characterization of age-related malondialdehyde oxidation: The effect of modulation by food restriction. Mech. Ageing Dev. 50: 277–287, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Yu B.P., Laganiere S., Kim J.W.: Influence of life-prolonging food restriction on membrane lipoperox-idation and antioxidant status. In: Simic M.G., Taylor K.A., Ward J.F., Von Sonntag C. (Eds.), Oxygen Radicals in Biology and Medicine. Plenum Pub. Corp., New York, 1989, pp. 1967–1073.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.W., Yu, B.P. Modulation of free radicals and superoxide dismutases by age and dietary restriction. Aging Clin Exp Res 2, 357–362 (1990). https://doi.org/10.1007/BF03323951

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323951

Keywords

Navigation