Skip to main content
Log in

DNA sequence changes in aging: How frequent, how important?

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Burnet F.M.: Intrinsic mutagenesis: a genetic approachto aging. J. Wiley and Sons, New York, 1974.

    Book  Google Scholar 

  2. Bernstein H., Byerly H.C., Hopf F.A., Michod R.E.: The evolutionary role of recombinational repair and sex. Int. Rev. Cytol. 96: 1–28, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Sacher G.A.: Evolutionary theory in gerontology. Perspect. Biol. Med. 25: 339–353,1982.

    PubMed  CAS  Google Scholar 

  4. Landegren U., Kaiser R., Caskey C.T., Hood L.: DNA diagnostics-molecular techniques and automation. Science 242: 229–237, 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Verma R.S., Babu A.: Human chromosomes: manual of basic techniques. Pergamon Press, New York, 1989.

    Google Scholar 

  6. Kan Y.W., Dozy A.M.: Polymorphism of DNA sequence adjacent to human β-globin structural gene: relationship to sickle cell mutations. Proc. Natl Acad. Sci. USA 75: 5631–5635, 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Uitterlinden A.G., Slagboom P.E., Knook D.L., Vijg J.: Two-dimensional DNA fingerprinting of human individuals. Proc. Natl. Acad. Sci. USA 86: 2742–2746, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Southern E.M.: Gel electrophoresis of restriction fragments. Methods Enzymol. 68: 152–176, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Roninson I.B.: Detection and mapping of homologous, repeated and amplified DNA sequences by DNA re-naturation in agarose gels. Nucleic Acids Res. 11:5413–5431, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Fischer S.G., Lerman L.S.: Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16: 191–200, 1979.

    Article  PubMed  CAS  Google Scholar 

  11. Saiki R.K., Bugawan T.L., Horn G.T., Mullis K.B., Erlich H.A.: Analysis of enzymatically amplified β- globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 324: 163–166, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Landegren U., Kaiser R., Sanders J., Hood L.: A liga- se-mediated gene detection technique. Science 241: 1077–1080,1988.

    Article  PubMed  CAS  Google Scholar 

  13. Myers R.M., Sheffield V.C., Cox D.R.: Detection of single base changes in DNA: ribonuclease cleavage and denaturing gradient gel electrophoresis. In: Davies K.E. (Ed.), Genome Analysis: A practical approach. IRL Press, Oxford, 1988, pp. 95–139.

    Google Scholar 

  14. Levedaku E.N., Landegren U., Hood L.E.: A strategy to study gene polymorphism by direct sequence analysis of cosmid clones and amplified genomic DNA. Bio Techniques 7: 438–442, 1989.

    Google Scholar 

  15. O’Farrell P.H.: High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007–4021, 1975.

    PubMed  Google Scholar 

  16. Lerman L.S., Fischer S.G., Hurley I., Silverstein K., Lumelsky N.: Sequence determined DNA separations. Annu. Rev. Biophys. Bioeng. 13: 399–423, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Sheffield V.C., Cox D.R., Lerman L.S., Myers R.M.: Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sei. USA 86: 232–236, 1989.

    Article  CAS  Google Scholar 

  18. Theophilus B.D.M., Latham T., Grabowski G.A., Smith F.I.: Comparison of RNase A, a chemical cleavage and GC-clamped denaturing gradient gel electrophoresis for the detection of mutations in exon 9 of the human acid β-glucosidase gene. Nucleic Acids Res. 17: 7707–7722, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Antonarakis S.E.: Recombinant DNA technology in the diagnosis of human genetic disorders. Clin. Chem. 35: B4–B6, 1989.

    PubMed  CAS  Google Scholar 

  20. Gordon J.: The human genome project promises insights into aging. Geriatrics 44: 89–91, 1989.

    PubMed  CAS  Google Scholar 

  21. Neel J.V., Satoh C., Goriki K., Fujita M., Takahashi N., Asakawa J., Hazama R.: The rate with which spontaneous mutation alters the electrophoretic mobility of polypeptides. Proc. Natl. Acad. Sci. USA 83: 389–393, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Giometti CS., Gemmell M.A., Nance S.L., Tollaksen S.L., Taylor J.: Detection of heritable mutations as quantitative changes in protein expression. J. Biol. Chem. 262: 12764–12767, 1987.

    PubMed  CAS  Google Scholar 

  23. Krauss M.R., Collins P.J., Blose S.H.: Computer-analysed 2-D electrophoresis. Nature 337: 669–670,1989.

    Article  PubMed  CAS  Google Scholar 

  24. Fleming J.E., Quattrocki E., Latter G., Miquel J., Marcuson R., Zuckerkandl E., Bensch F.G.: Age-dependent 120 changes in proteins of Drosophila melanogaster. Science 231: 1157–1159, 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Uitterlinden A.G., Vijg J.: Two-dimensional DNA typing. TIBTECH 7: 336–341, 1989.

    Article  CAS  Google Scholar 

  26. Finnon P., Lloyd D.C., Edwards A.A.: An assessment of the metaphase finding capability of the Cytoscan 110. Mutation Res. 164: 101–108, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Carrano A.V., Gray J.W., Van Dilla M.A.: Flow cytogenetics: progress towards chromosomal aberration detection. In: Evans H.J., Lloyd D.C. (Eds.), Mutagen Induced Chromosome Damage in Man. University Press, Edinburgh, 1978, pp. 326–338.

    Google Scholar 

  28. Green D.K., Fantes J.A., Evans H.J.: Detection of randomly occurring aberrant chromosomes as a measure of genetic change. In: Gray J.W. (Ed.), Flow Cytogenetics. Academic Press, London, 1989, pp. 161–171.

    Chapter  Google Scholar 

  29. Ames B.N., Lee F.D., Durston W.E.: An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. USA 70: 782–786, 1973.

    Article  PubMed  CAS  Google Scholar 

  30. Chu E.H.Y., Mailing H.V.: Chemical induction of specific locus mutations in Chinese hamster cells in vitro. Proc. Natl. Acad. Sci. USA 61: 1306–1310, 1968.

    Article  PubMed  CAS  Google Scholar 

  31. Horn P.L., Turker M.S., Ogburn C.E., Disteche C.M., Martin G.M.: A cloning assay for 6-thioguanine resistance provides evidence against certain somatic mutational theories of aging. J. Cell. Physiol. 121: 309–315, 1984.

    Article  PubMed  CAS  Google Scholar 

  32. Simpson D., Crosby R.M., Skopek T.R.: A method for specific cloning and sequencing of human HPRT cDNA for mutation analysis. Biochem. Biophys. Res. Commun. 151: 487–492, 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Vrieling H., Simons J.W.I.M., Van Zeeland A.A.: Nucleotide sequence determination of point mutations at the mouse HPRT locus using in vitro amplification of HPRT mRNA sequences. Mutation Res. 198:107–113, 1988.

    Article  PubMed  CAS  Google Scholar 

  34. Albertini R.J., Castle K.L., Borcherding W.R.: T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood. Proc. Natl. Acad. Sci. USA 79: 6617–6621, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Morley A.A., Trainor K.J., Seshadri R., Ryall R.G.: Measurement of in vivo mutations in human lymphocytes. Nature 302: 155–156, 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Featherstone T., Marshall P.D., Evans H.J.: Problems and pitfalls in assessing human T-lymphocyte mutant frequencies. Mutation Res. 179: 215–230, 1987.

    Article  PubMed  CAS  Google Scholar 

  37. Janatipour M., Trainor K.J., Kutlaca R., Bennett G., Hay J., Turner D.R., Morley A.A.: Mutations in human lymphocytes studied by an HLA selection system. Mutation Res. 198: 221–226, 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Hakoda M., Nishioka K., Kamatani N.: Homozygous deficiency at autosomal locus aprt in human somatic cells in vivo induced by two different mechanisms. Cancer Res. 50: 1738–1741, 1990.

    PubMed  CAS  Google Scholar 

  39. Tindall K.R., Stankowski L.F.: Molecular analysis of spontaneous mutations at the gpt locus in Chinese hamster ovary (AS52) cells. Mutation Res. 220: 241–253, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Goring D.R., Gupta K., Dubow M.S.: Analysis of spontaneous mutations in a chromosomally located HSV-1 thymidine kinase (TK) gene in a human cell line. Somat. Cell. Mol. Genet. 13: 47–56, 1987.

    Article  PubMed  CAS  Google Scholar 

  41. Glazer P.M., Sarkar S.N., Summers W.C.: Detection and analysis of UV-induced mutations in mammalian cell DNA using a lambda phage shuttle vector. Proc. Natl. Acad. Sci. USA 83: 1041–1044, 1986.

    Article  PubMed  CAS  Google Scholar 

  42. Langlois R.G., Bigbee W.L., Kyoizumi S., Nakamura N., Bean M.A., Akiyama M., Jensen R.H.: Evidence for increased somatic cell mutations at the glycophorin A locus in atomic bomb survivors. Science 236: 445–448, 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Griffiths D.F.R., Davies S.J., Williams D., Williams G.T., Williams E.D.: Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature 333: 461–463, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. DuBridge R.B., Calos M.P.: Recombinant shuttle vectors for the study of mutation in mammalian cells. Mutagenesis 3: 1–9, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Razzaque A., Mizusawa H., Seidman M.M.: Rearrangement and mutagenesis of a shuttle vector plasmid after passage in mammalian cells. Proc. Natl. Acad. Sci. USA 80: 3010–3014, 1983.

    Article  PubMed  CAS  Google Scholar 

  46. Calos M.P., Lebkowski J.S., Botchan M.R.: High mutation frequency in DNA transfected into mammalian cells. Proc. Natl. Acad. Sci. USA 80: 3015–3019,1983.

    Article  PubMed  CAS  Google Scholar 

  47. DuBridge R.B., Tang P., Chao Hsia H., Leong P.M., Miller J.H., Calos M.P.: Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7: 379–387, 1987.

    PubMed  CAS  Google Scholar 

  48. Gossen J.A., Vijg J.: E.coli C: a convenient host strain for rescue of highly methylated DNA. Nucleic Acids Res. 16: 9343, 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Gossen J.A., Tan CHT., Lohman P.H.M., Berends F., Knook D.L., Zwarthoff E.C., Vijg J.: Efficient rescue of integrated shuttle vectors from transgenic mice: a new model for studying mutations in vivo. Proc. Natl. Acad. Sci. USA 86: 7971–7975,1989.

    Article  PubMed  CAS  Google Scholar 

  50. Vijg J., Uitterlinden A.G.: A search for DNA alterations in the aging mammalian genome: an experimental strategy. Mech. Ageing Dev. 41: 47–63, 1987.

    Article  PubMed  CAS  Google Scholar 

  51. Thilly W.G., Liu V.F., Brown B.J., Cariello N.F., Kat A.G., Keohavong P.: Direct measurement of mutational spectra in humans. Genome 31: 590–593, 1989.

    Article  PubMed  CAS  Google Scholar 

  52. Keohavong P., Thilly W.G.: Fidelity of DNA polymerases in DNA amplification. Proc. Natl. Acad. Sci. USA 86: 9253–9257, 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Hellgren D., Lambert B.: Mechanisms for recombination between stably integrated vector sequences in CHO cells. Mutation Res. 215: 197–204, 1989.

    Article  PubMed  CAS  Google Scholar 

  54. Jeffreys A.J., Neumann R., Wilson V.: Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60:473–485,1990.

    Article  PubMed  CAS  Google Scholar 

  55. Failla G.: The aging process and carcinogenesis. Ann. N. Y. Acad. Sci. 71: 1124–1135, 1958.

    Article  PubMed  CAS  Google Scholar 

  56. Szilard L: On the nature of the aging process. Proc. Natl. Acad. Sci. USA. 45: 35–45, 1959.

    Article  Google Scholar 

  57. Curtis H.J.: Biological Mechanisms of Aging. C.C. Thomas Springfield, Illinois, 1966.

    Google Scholar 

  58. Drake J. W.: Comparative rates of spontaneous mutation. Nature 221: 1132, 1969.

    Article  PubMed  CAS  Google Scholar 

  59. Jeffreys A.J., Royle N.J., Wong Z.: Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 378–381, 1988.

    Article  Google Scholar 

  60. Charlesworth B.: Evolution in Age-Structured Populations. Cambridge University Press, London, 1980.

    Google Scholar 

  61. Romeo G., Devoto M., Vicente Galietta L.J.: Why is the cystic fibrosis gene so frequent? Hum. Genet. 84: 1–5, 1989.

    Article  PubMed  CAS  Google Scholar 

  62. Evans H.J.: The role of human cytogenetics in studies of mutagenesis and carcinogenesis. In: Ramel C., Lambert B., Magnusson J. (Eds.), Generic toxicology of environmental chemicals, Part A: Basic principles and mechanisms of action. Alan R. Liss, New York, 1986, pp. 41–69.

    Google Scholar 

  63. Risch N., Reich E.W., Wishnick M.M., McCarthy J.G.: Spontaneous mutation and parental age in humans. Am. J. Hum. Genet. 41: 218–248, 1987.

    PubMed  CAS  Google Scholar 

  64. Plachot M., De Grouchi J., Junca A.M., Mandelbaum J., Turleau C., Coullin P., Cohen J., Salat-Baroux J.: From oocyte to embryo: A model, deduced from in vitro fertilization, for natural selection against chromosome abnormalities. Ann. Genet. 30: 22–32, 1987.

    PubMed  CAS  Google Scholar 

  65. Martin R.H., Balkan W., Burns K., Rademaker A.W., Lin C.C., Rudd N.L.: The chromosome constitution of 1000 human spermatozoa. Hum. Genet. 63: 305–309, 1983.

    Article  PubMed  CAS  Google Scholar 

  66. Stevenson K.G., Curtis H.J.: Chromosomal aberrations in irradiated and nitrogen mustard treated mice. Radiat. Res. 15: 744–784, 1961.

    Article  Google Scholar 

  67. Crowley C., Curtis H.J.: The development of somatic mutations in mice with age. Proc. Natl. Acad. Sci. USA 49: 626–628, 1963.

    Article  PubMed  CAS  Google Scholar 

  68. Martin G.M., Smith A.C., Ketterer D.J., Ogburn C.E., Disteche C.M.: Increased chromosomal aberrations in first metaphases of cells isolated from the kidneys of aged mice. Isr. J. Med. Sci. 21: 296–301, 1985.

    PubMed  CAS  Google Scholar 

  69. Hedner K., Hogstedt B., Kolnig A.M., Mark-Vendel E., Strombeck B., Mitelman F.: Sister chromatid exchanges and structural chromosome aberrations in relation to age and sex. Hum. Genet. 62: 305–309, 1982.

    Article  PubMed  CAS  Google Scholar 

  70. Marlhens F., Achkar W. Al., Aurias A., Couturier J., Dutrillaux A.M., Gerbault-Sereau M., Hoffschir F., Lamoliatte E., Lefrancois D., Lombard M., Muleris M., Prieur M., Prod’homme M., Sabatier L., Viegas-Pe-quignot E., Volobouev V., Dutrillax B.: The rate of chromosome breakage is age dependent in lymphocytes of adult controls. Hum. Genet. 73:290–297,1986.

    Article  PubMed  CAS  Google Scholar 

  71. Prieur M., Achkar W.A., Aurias A., Couturier J., Dutrillaux A.M., Dutrillaux B., Flury-Herard A., Gerbault-Seureau M., Hoffschir F., Lamoliatte E., Lefrancois D., Lombard M., Muleris M., Ricoul M., Sabatier L., Viegas-Pequignot E.: Acquired chromosome rearrangements in human lymphocytes: effect of aging. Hum. Genet. 79: 147–150, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Joenje H.: Genetic toxicology of oxygen. Mutation Res. 219: 193–208, 1989.

    Article  PubMed  CAS  Google Scholar 

  73. Esposito D., Fassina G., Szabo P., De Angelis P., Rodgers L., Weksler M., Siniscalco M.: Chromosomes of older humans are more prone to aminopteri-ne-induced breakage. Proc. Natl. Acad. Sci. USA 86: 1302–1306,1989.

    Article  PubMed  CAS  Google Scholar 

  74. Ligthart G.J., Corberand J.X., Fournier C., Galanaud P., Hijmans W., Kennes B., Muller-Hermelink H.K., Steinmann G.G.: Admission criteria for immuno-gerontological studies in man: the SENIEUR protocol. Mech. Ageing Dev. 28: 47–55,1984.

    Article  PubMed  CAS  Google Scholar 

  75. Mos J., Hollander C.F.: Analysis of survival data on aging rat cohorts: pitfalls and some practical considerations. Mech. Ageing Dev;. 38: 89–105, 1987.

    Article  PubMed  CAS  Google Scholar 

  76. Golub E.S.: Somatic mutation: diversity and regulation of the immune repertoire. Cell 48: 723–724,1987.

    Article  PubMed  CAS  Google Scholar 

  77. Tausta S.L., Klobutcher L.A.: Internal eliminated sequences are removed prior to chromosome fragmentation during development in Euplotes crassus. Nucleic Acids Res. 18: 845–853, 1990.

    Article  PubMed  CAS  Google Scholar 

  78. Yunis J.J.: The chromosomal basis of human neoplasia. Science 221: 227–236, 1983.

    Article  PubMed  CAS  Google Scholar 

  79. Esser K.: Genetic control of aging: the mobile intron model. In: Bergener M., Ermini M., Stahelin H. (Eds.), The Sandoz Lectures in Gerontology. Thresholds in Aging. Academic Press, London, 1985, pp. 3–20.

    Google Scholar 

  80. Bertrand H., Chen B.S.S., Griffiths A.J.F.: Insertion of a foreign nucleotide sequence into mitochondrial DNA causes senescence in Neurospora intermedia. Cell 41: 877–884, 1985.

    Article  PubMed  CAS  Google Scholar 

  81. Osiewacz H.D.: Molecular analysis of aging processes in fungi. Mutation Res. 237: 1–8, 1990.

    Article  PubMed  CAS  Google Scholar 

  82. Piko L., Hougham A.J., Bulpitt K.J.: Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging. Mech. Ageing Dev. 43: 279–293, 1988.

    Article  PubMed  CAS  Google Scholar 

  83. Linnane A.W., Marzuki S., Ozawa T., Tanaka M.: Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancer I: 642–645, 1989.

    Article  Google Scholar 

  84. Johnson R., Strehler B.L.: Loss of genes coding for ribosomal RNA in ageing brain cells. Nature 240: 412–414, 1972.

    Article  PubMed  CAS  Google Scholar 

  85. Gaubatz J.W., Cutler R.G.: Age-related differences in the number of ribosomal RNA genes of mouse tissues. Gerontology 24: 179–207, 1978.

    Article  PubMed  CAS  Google Scholar 

  86. Strehler B.L.: Genetic instability as the primary cause of human aging. Exp. Gerontol. 21: 283–319, 1986.

    Article  PubMed  CAS  Google Scholar 

  87. Slagboom P.E., De Leeuw W.J.F., Vijg J.: Messenger RNA levels and methylation patterns of GAPDH and β-actin genes in rat liver, spleen and brain in relation to aging. Mech. Ageing Dev. 53: 243–257, 1990.

    Article  PubMed  CAS  Google Scholar 

  88. Uitterlinden A.G., Vijg J., Giphart M.J., Knook D.L.: Variation in restriction fragment length and methylation pattern of rat MHC class I genes. Exp. Clin. Immunogen. 2: 215–222, 1985.

    CAS  Google Scholar 

  89. Ono T., Okada S., Kawakami T., Honjo T., Getz M.J.: Absence of gross change in primary DNA sequence during aging process of mice. Mech. Ageing Dev. 32: 227–234, 1985.

    Article  PubMed  CAS  Google Scholar 

  90. Mays-Hoopes L.L., Brown A., Huang R.C.C.: Methylation and rearrangement of mouse intracisternal A particle genes in development, aging and myeloma. Mol. Cell. Biol. 3: 1371–1380, 1983.

    PubMed  CAS  Google Scholar 

  91. Rush M.G., Misra R.: Extrachromosomal DNA in eucaryotes. Plasmid 14: 177–191, 1985.

    Article  PubMed  CAS  Google Scholar 

  92. Kunisada T., Yamagishi H., Ogita Z., Hirakawa T., Mitsui Y.: Appearance of extrachromosomal circular DNAs during in vivo and in vitro ageing of mammalian cells. Mech. Ageing Dev. 29: 89–99, 1985.

    Article  PubMed  CAS  Google Scholar 

  93. Riabowol K., Shmookler Reis R.J., Goldstein S.: Interspersed repetitive and tandemly repetitive sequences are differentially represented in extrachromosomal covalently closed circular DNA of human diploid fibroblasts. Nucleic Acid Res. 18: 5563–5584, 1985.

    Article  Google Scholar 

  94. Flores S.C., Moore T.K., Gaubatz J.W.: Dispersed repetitive sequences of the mouse genome are differentially represented in extrachromosomal circular DNAs in vivo. Plasmid 17: 257–260, 1987.

    Article  PubMed  CAS  Google Scholar 

  95. Gaubatz J.W., Flores S.C.: Tissue-specific and age-related variations in repetitive sequences of mouse extrachromosomal circular DNAs. Mutation Res. 237: 29–36, 1990.

    Article  PubMed  CAS  Google Scholar 

  96. Fujimoto S., Yamagishi H.: Isolation of an excision product of T-cell receptor a-chain rearrangements. Nature 327: 242–243, 1987.

    Article  PubMed  CAS  Google Scholar 

  97. Murray V.: Are transpositions a cause of ageing? Mutation Res. (in press).

  98. Servomaa K., Rytömaa T.: UV light and ionizing radiations cause programmed death of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (L1Rn). Int. J. Radiat. Biol. 57: 331–343, 1990.

    Article  PubMed  CAS  Google Scholar 

  99. Thein S.L., Jeffreys A.J., Gooi H.C., Cotter F., Flint J., O’Connor N.T.J., Weatherall O.J., Wainscoat J.S.: Detection of somatic changes in human cancer DNA by DNA fingerprint analysis. Br. J. Cancer 55: 353–356, 1987.

    Article  PubMed  CAS  Google Scholar 

  100. Armour J.A.L., Patel I., Thein S.L., Fey M.F., Jeffreys A.J.: Analysis of somatic mutations at human minisatellite loci in tumors and cell lines. Genomics 4: 328–334, 1989.

    Article  PubMed  CAS  Google Scholar 

  101. Wahls W.P., Wallace L.J., Moore P.D.: Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60: 95–103, 1990.

    Article  PubMed  CAS  Google Scholar 

  102. Kelly R., Bulfield G., Collick A., Gibbs M., Jeffreys A. J.: Characterization of a highly unstable mouse minisatellite locus: evidence for somatic mutation during early development. Genomics 5: 844–856, 1989.

    Article  PubMed  CAS  Google Scholar 

  103. Yokota H., Iwasaki T., Takahashi M., Oishi M.: A tissue-specific change in repetitive DNA in rats. Proc. Natl. Acad. Sci. USA 86: 9233–9237, 1989.

    Article  PubMed  CAS  Google Scholar 

  104. Calabretta B., Robberson D.L., Barrera-Saldana H.A., Lambrou T.P., Saunders G.F.: Genome instability in a region of human DNA enriched in Alu repeat sequences. Nature 296: 219–225, 1982.

    Article  PubMed  CAS  Google Scholar 

  105. Gurdon J.B.: Nuclear transplantation in eggs and oocytes. J. Cell Sci (Suppl. 4): 287-318, 1986.

  106. Morley A.A., Cox S., Holliday R.: Human lymphocytes resistant to 6-thioguanine increase with age. Mech. Ageing Dev. 19: 21–26, 1982.

    Article  PubMed  CAS  Google Scholar 

  107. Strauss G.H., Albertini R.J.: Enumeration of 6-thio-guanine-resistant peripheral blood lymphocytes in man as a potential test for somatic cell mutations arising in vivo. Mutation Res. 61: 353–379, 1979.

    Article  PubMed  CAS  Google Scholar 

  108. Evans H.J., Vijayalaxmi: Induction of 8-azaguanine resistance and sister chromatid exchange in human lymphocytes exposed to mitomycin C and X rays in vivo. Nature 292: 601–605, 1981.

    Article  PubMed  CAS  Google Scholar 

  109. Trainor K.J., Wigmore D.J., Chrysostomu A., Dempsey J.L., Seshadri R., Morley A.A.: Mutation frequency in human lymphocytes increase with age. Mech. Ageing Dev. 27: 83–86,1984.

    Article  PubMed  CAS  Google Scholar 

  110. Carrano A. V.: Summary of the workshop on mammalian in vivo somatic mutation. Genome 31: 458–459, 1989.

    Article  Google Scholar 

  111. McCarron M.A., Kutlaca A., Morley A.A.: The HLA-A mutation assay: Improved technique and normal results. Mutation Res. 225: 189–193, 1989.

    Article  PubMed  CAS  Google Scholar 

  112. Nalbantoglu J., Phear G., Meuth M.: DNA sequence analysis of spontaneous mutations at the aprt locus of hamster cells. Mol. Cell. Biol. 7: 1445–1449, 1987.

    PubMed  CAS  Google Scholar 

  113. Bradley W.E.C., Gareau J.L.P., Seifert A.M., Messing K.: Molecular characterization of 15 rearrangements among 90 human in vivo somatic mutants shows that deletions predominate. Mol. Cell. Biol. 7: 956–960, 1987.

    PubMed  CAS  Google Scholar 

  114. Albertini R.J., O’Neill J.P., Nicklas J.A., Heintz N.H., Kelleher P.C.: Alterations of the HPRT gene in human in viuo-derived 6-thioguanine-resistant T lymphocytes. Nature 316: 369–371, 1985.

    Article  PubMed  CAS  Google Scholar 

  115. Turner D.R., Morley A.A., Haliandros M., Kutlaca R., Sanderson B.J.: In vivo somatic mutations in human lymphocytes frequently result from major gene alterations. Nature 315: 343–345, 1985.

    Article  PubMed  CAS  Google Scholar 

  116. McGinniss M.J., Nicklas J.A., Albertini R.J.: Molecular analyses of in vivo hprt mutations in human T-lymphocytes: IV. studies in newborns. Environ. Mol. Mutagen. 14: 229–237, 1989.

    Article  CAS  Google Scholar 

  117. Miller J.H.: Mutational specificity in bacteria. Ann. Reu. Genet. 17: 215–238,1983.

    Article  CAS  Google Scholar 

  118. De Jong P.J., Grosovsky A.J., Glickman B.W.: Spectrum of spontaneous mutation at the APRT locus of Chinese hamster ovary cells: An analysis at the DNA sequence level. Proc. Natl. Acad. Sci. USA 85: 3499–3503, 1988.

    Article  PubMed  Google Scholar 

  119. Bishop J.M.: The molecular genetics of cancer. Science 235: 305–311, 1987.

    Article  PubMed  CAS  Google Scholar 

  120. Olson C.B.: A review of why and how we age: A defence of multifactorial aging. Mech. Ageing Dev. 41: 1–28, 1987.

    Article  PubMed  CAS  Google Scholar 

  121. Van Leeuwen F., Van der Beek E., Seger M., Burbach P., Ivell R.: Age-related development of a heterozygous phenotype in solitary neurons of the homozygous Brattleboro rat. Proc. Natl. Acad. Sci. USA 86: 6417–6420, 1989.

    Article  PubMed  Google Scholar 

  122. Shyman S., Weaver S.: Chromosomal rearrangements associated with LINE elements in the mouse genome. Nucleic Acids Res. 14: 5085–5093, 1985.

    Article  Google Scholar 

  123. Martin G.M., Fry M., Loeb L.A.: Somatic mutation and aging in mammalian cells. In: Sohal R.S., Birnbaum L.S., Cutler R.G. (Eds.), Molecular Biology of Aging: Gene stability and gene expression. Raven Press, New York, 1985, pp. 7–21.

    Google Scholar 

  124. Schimke R.T., Sherwood S.W., Hill A.B., Johnstone R.N.: Overreplication and recombination of DNA in higher eukaryotes: Potential consequences and biological implications. Proc. Natl. Acad. Sci. USA 83: 2157–2161, 1986.

    Article  PubMed  CAS  Google Scholar 

  125. Davidson E.H., Britten R.J.: Regulation of gene expression: possible role of repetitive sequences. Science 204: 1052–1059,1979.

    Article  PubMed  CAS  Google Scholar 

  126. Saffer J.D., Thurston S.J.: A negative regulatory element with properties similar to those of enhancers is contained within an Alu sequence. Mol. Cell. Biol. 9: 355–364, 1989.

    PubMed  CAS  Google Scholar 

  127. Wu J., Grindlay J., Bushel P., Mendelsohn L., Allan M.: Negative regulation of the human ε-globin gene by transcriptional interference: role of an Alu repetitive element. Mol. Cell. Biol. 10: 1209–1216, 1990.

    PubMed  CAS  Google Scholar 

  128. Stoppa-Lyonnet D., Carter P.E., Meo T., Tosi M.: Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc. Natl. Acad. Sci. USA 87: 1551–1555, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijg, J. DNA sequence changes in aging: How frequent, how important?. Aging Clin Exp Res 2, 105–123 (1990). https://doi.org/10.1007/BF03323904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323904

Key Words

Navigation