Skip to main content
Log in

Variation and Patterns of DNA Methylation in Maize C-type CMS Lines and their Maintainers

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

DNA methylation plays an important role in gene expression regulation during biological development in plants. This study adopted methylation sensitive amplification polymorphism (MSAP) to compare the levels and patterns of cytosine methylation at CCGG sites in maize genome. The tissues assayed included seedlings and tassels of C-type cytoplasmic male sterility (C Huang Zao Si, C 48-2) and its maintainer lines. For each tissue, both C Huang Zao Si and C 48-2 were more methylated than their corresponding maintainers not only on MSAP ratios, but also on the full methylation levels. In different nuclear backgrounds, the two tissues were more methylated in Huang Zao Si than in 48-2, although the two lines shared the same cytoplasm. Full methylation of internal cytosine was the dominant type in the maize genome. In addition, four different classes of methylation patterns were identified in tassels between C-CMS lines and their maintainer lines; these were specific-methylation, demethylation, hypo-methylation, and hyper-methylation. The results obtained demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and suggested the possible association between DNA methylation polymorphism and C-type cytoplasmic male sterility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MSAP:

methylation sensitive amplification polymorphism

CMS:

cytoplasmic male sterility

Rf:

Restorerof-fertility

ORFs:

open reading frames

AFLP:

amplified fragment length polymorphism

References

  1. Hanson MR & Bentolila S, The Plant Cell, 16 (2004) 154.

    Article  Google Scholar 

  2. Guo XC, Chin J Appl Environ Biol, 7 (2001) 297.

    CAS  Google Scholar 

  3. Carlsson J, Leino M, Sohlberg J, Jens F, Sundstrom JF & Glimellus K, Mitochondrion, 6 (2008) 74.

    Article  Google Scholar 

  4. Ulian EC, Magill JM & Smith RH, Theor Appl Genet, 92 (1996) 976.

    Article  CAS  Google Scholar 

  5. Rossi V, Motto M & Pelligrini L, J Biol Chem, 272 (1997) 13758.

    Article  PubMed  CAS  Google Scholar 

  6. Portis E, Acquadro A, Comino C & Lanteri S, Plant Sci, 166 (2004) 16.

    Article  Google Scholar 

  7. Adams RLP, Molecular biology of DNA methylation, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, (1985) pp 6, 9, 13, 182.

    Book  Google Scholar 

  8. Holliday R, Science, 236 (1987) 163.

    Article  Google Scholar 

  9. Richards EJ, Trends Genet, 13 (1997) 319.

    Article  PubMed  CAS  Google Scholar 

  10. Finnegan EJ, Brettell RIS & Dennis ES, The role of DNA methylation in the regulation of plant gene expression: Molecular biology and biological significance, (J P Jost, H P Saluz, editors), Basel: Birkhauser, (1993) pp 218–261.

    Google Scholar 

  11. Sekhon RS & Chopra S, Genetics (2008) 0.1534/.108.097170.

    Google Scholar 

  12. Sherman JD & Talbert LE, Genome, 45 (2002) 253.

    Article  PubMed  CAS  Google Scholar 

  13. Hue Y, Chen XF, Xiong JP & Zhu YG, Hereditas, 27 (2005) 595.

    Google Scholar 

  14. Finnegan EJ, Peacock WJ & Dennis ES, Curr Opion Genet Develop, 10 (2000) 217.

    Article  CAS  Google Scholar 

  15. Kaepper SM, Kaepper HF & Rhea Y, Plant Mol Biol, 43 (2000) 179.

    Article  Google Scholar 

  16. Ronemus MJ, Galbiati M, Ticknor C, Chen J & Dellaporta SL, Science, 273 (1996) 654.

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka H, Masuta C, Jehara K, Kataoka J, Koiwai A & Noma M, Plant Mol Biol, 35 (1997) 981.

    Article  PubMed  CAS  Google Scholar 

  18. Reyna-Lopez GE, Simpson J & Ruiz-Herrera J, Mol Gen Genet, 253 (1997) 703.

    Article  PubMed  CAS  Google Scholar 

  19. Gu HY, Laboratory handbook of plant molecular biology, Publishing House of High Education, Beijing, (1998) pp 4–10.

    Google Scholar 

  20. Vos P & Hogers R, Nucleic Acids Res, 23 (1995) 4407.

    Article  PubMed  CAS  Google Scholar 

  21. Xiong LZ & Xu CG, Mol Gen Genet, 261 (1999) 439.

    Article  PubMed  CAS  Google Scholar 

  22. Zhao XX, Chai Y & Liu B, Plant Sci, 172 (2007) 930.

    Article  CAS  Google Scholar 

  23. Xu ML, Li XQ & Korban SS, Plant Mol Biol Rep, 18 (2000) 361.

    Article  CAS  Google Scholar 

  24. Lu YL, Rong TZ and Cao MJ, J Genet Genom, 35 (2008) 1.

    Article  CAS  Google Scholar 

  25. Peraza-Echeverria S, Herrera-Valencia VA & James-Kay A, Plant Sci, 161 (2001) 359.

    Article  PubMed  CAS  Google Scholar 

  26. Lu GY, Wu XM, Chen B, Gao GZ, Xu K & Li XZ, Chinese Sci Bull, 5 (2006) 182.

    Article  Google Scholar 

  27. Jaligot E, Beule T, Baurens FC, Billotte N & Rival A, Genome, 47 (2004) 224.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang HY, Pang H & Li Y, Chinese Sci Bull, 51 (2006) 1721.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingzhao Rong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Liu, Y., Wang, J. et al. Variation and Patterns of DNA Methylation in Maize C-type CMS Lines and their Maintainers. J. Plant Biochem. Biotechnol. 19, 43–50 (2010). https://doi.org/10.1007/BF03323434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323434

Key words

Navigation