Skip to main content
Log in

Dual Density Conditions in (DF)— spaces, I

  • Published:
Results in Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 1989

Abstract

We define the two “dual density conditions” (DDC) and (SDDC) for locally convex topological vector spaces and study them in the setting of the class of (DF)- spaces (originally introduced by A. Grothendieck [14]). We show that for a (DF)- space E, (DDC) is equivalent to the metrizability of the bounded subsets of E, and prove that such a space E has (DDC) resp. (SDDC) if and only if the space l(E) of all bounded sequences in E is quasibarrelled resp. bornological.

As a consequence, we can then characterize the barrelled spaces \({\cal L}_b(\lambda_1,\ E)\) of continuous linear mappings from a Köthe echelon space λ1 into a locally complete (DF)- space E; for purposes of a comparison, we also provide the corresponding characterization of the quasibarrelled resp. bornological (DF)- tensor products1)b ε E. Our results on the (DF)- spaces of type \({\cal L}_b(\lambda_1,\ E)\) and1)b ) ⊗ε E are of special interest in view of the recent negative solution, due to J. Taskinen (see [25]), of Grothendieck’s “problème des topologies” ([15]). — In part II of the article, we will treat weighted inductive limits of spaces of continuous functions and their projective hulls (cf. [6]) as an application.

In his study of ultrapowers of locally convex spaces, S. Heinrich [16] had found it necessary to introduce the “density condition”. Our article [2] investigated this condition, mainly in the setting of Fréchet spaces, and with applications to distinguished echelon spaces λ1. However, on the way to the main theorems of [2], it became apparent that the “right” setting for most of this material was a dual reformulation of the density condition in the context of (DF)- spaces, and this observation prompted the present research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-D. Bierstedt, I. The approximation property for weighted function spaces, Bonner Math. Schriften 81(1975), 3–25; II. Tensor products of weighted spaces, Bonner Math. Schriften 81(1975), 26-58.

    MathSciNet  Google Scholar 

  2. K. D. Bierstedt, J. Bonet, Stefan Heinrich’s density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nachr. 135(1988), 149–180 (also see: La condition de densité et les espaces échelonnés distingués, C. R. Acad. Sci. Paris, t. 303, Série I, n0 10, 1986, pp. 459-462).

    Article  MathSciNet  MATH  Google Scholar 

  3. K.-D. Bierstedt, R. Meise, Bemerkungen über die Approximationseigenschaft lokalkonvexer Funktionenräume, Math. Ann. 209(1974), 99–107.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. D. Bierstedt, R. Meise, Distinguished echelon spaces and the projective description of weighted inductive limits of type \({\cal V}_dC(X)\), pp. 169-226 in: Aspects of Mathematics and its Applications, Elsevier Science Publ., North-Holland Math. Library, 1986.

  5. K. D. Bierstedt, R. Meise, Weighted inductive limits and their projective descriptions, Doğa Tr. J. Math. 10,1(1986) (Special Issue: Proceedings of the Silivri Conference 1985), 54-82.

    Google Scholar 

  6. K. D. Bierstedt, R. Meise, W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272(1982), 107–160.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. D. Bierstedt, R. G. Meise, W. H. Summers, Köthe sets and Köthe sequence spaces, pp. 27-91 in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies 71, 1982.

  8. J. Bonet, A projective description of weighted inductive limits of spaces of vector valued continuous functions, Collectanea Math. 34(1983), 115–125.

    MathSciNet  Google Scholar 

  9. A. Defant, W. Govaerts, Bornological and ultrabornological spaces of type C(X, F) and EεF, Math. Ann. 268(1984), 347–355.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Defant, W. Govaerts, Tensor products and spaces of vector-valued continuous functions, Manuscripta Math. 55(1986), 433–449.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Dierolf, On spaces of continuous linear mappings between locally convex spaces, (Habilitationsschrift, Univ. München, 1983), Note di Matematica 5(1985), 147–255.

    MathSciNet  MATH  Google Scholar 

  12. M. Florencio, P. J. Paúl, Barrelledness conditions on certain vector valued sequence spaces, Arch. der Math. 48(1987), 153–164.

    Article  MATH  Google Scholar 

  13. K. Floret, Some aspects of the theory of locally convex inductive limits, pp. 205-237 in: Functional Analysis: Surveys and Recent Results II (Proceedings of the Second Paderborn Conference on Functional Analysis 1979), North-Holland Math. Studies 38, 1980.

  14. A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil Math. 3(1954), 57–122.

    MathSciNet  Google Scholar 

  15. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16, 1955 (reprint 1966).

  16. S. Heinrich, Ultrapowers of locally convex spaces and applications I, Math. Nachr. 118(1984), 285–315.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Horváth, Topological Vector Spaces and Distributions I, Addison-Wesley, Reading, Mass., 1966.

    MATH  Google Scholar 

  18. H. Jarchow, Locally Convex Spaces, Math. Leitfäden, B. G. Teubner, Stuttgart, 1981.

    Book  MATH  Google Scholar 

  19. G. Köthe, Topological Vector Spaces I, II, Grundlehren der math. Wiss. 159 and 257, Springer, Berlin-Heidelberg-New York, 1969 and 1979.

    Google Scholar 

  20. A. Marquina, J. M. Sanz Serna, Barrelledness conditions on C0(E), Arch, der Math. 31(1978), 589–596.

    Article  Google Scholar 

  21. A. Marquina, J. Schmets, On bornological c0(E) spaces, Bull. Soc. R. Sci. Liège 51(1982), 170–173.

    MathSciNet  MATH  Google Scholar 

  22. P. Pérez Carreras, J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Studies 131, Amsterdam-New York-Oxford-Tokyo, 1987.

  23. A. Pietsch, Nukleare lokalkonvexe Räume, Akademie-Verlag, Berlin, 1969.

    MATH  Google Scholar 

  24. W. Ruess, The strict topology and (DF)-spaces, pp. 105-118 in: Functional Analysis: Surveys and Recent Results (Proceedings of the Paderborn Conference on Functional Analysis 1976), North-Holland Math. Studies 27, 1977.

  25. J. Taskinen, The projective tensor product of Fréchet-Montel spaces, to appear in Studia Math.

  26. M. Valdivia, A characterization of echelon Köthe-Schwartz spaces, pp. 409-419 in: Approximation Theory and Functional Analysis, North-Holland Math. Studies 35, 1979.

  27. M. de Wilde, Closed Graph Theorems and Webbed Spaces, Pitman Research Notes in Math. 19, London-San Francisco-Melbourne, 1978.

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03322456.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierstedt, K.D., Bonet, J. Dual Density Conditions in (DF)— spaces, I. Results. Math. 14, 242–274 (1988). https://doi.org/10.1007/BF03323229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323229

Keywords

Navigation