Skip to main content
Log in

Gyrosemidirect Product Structure of Bounded Symmetric Domains

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A binary operation ⊕ is defined in any bounded symmetric domain D turning it into a groupoid with relaxed associative and commutative laws, called a gyrogroup. It is shown that the group Aut(D) of all holomorphic automorphisms of D has a gyrosemidirect product structure, a structure that generalizes the semidirect product one. More specifically, the group Aut(D) turns out to be the gyrosemidirect product of the (nongroup) gyrogroup (D, ⊕) and the isotropic group K of D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Benz, Geometrische Transformationen unter besonderer Berücksichtigung der Lorentz- transformationen, Chap. 6, BI Wissenschaftsverlag, Mannheim, Wien, Zürich, 1992.

    Google Scholar 

  2. C. W. F. Everitt, W. M. Fairbank and L.I. Schiff, Theoretical background and present status of the Stanford relativity-gyroscope experiment, in The Significance of Space Research for Fundamental Physics, Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept. 1969

  3. C.W.F. Everitt, Gravity Probe B: I. The scientific implications, The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23–29, 1991, World Scientific Pub., 1991.

  4. J.D. Fairbank, B.S. Deaver, Jr., C.W.F. Everitt and P.F. Michelson, Near Zero: New Frontiers of Physics, Freeman, New York, 1988.

  5. Y. Friedman and B. Russo, A Gelfand-Naimark theorem for JB*-triples, Duke Math. J. 53 (1986) 139–148.

    Article  MathSciNet  MATH  Google Scholar 

  6. L.A. Harris, A Bounded symmetric homogeneous domains in infinite dimensional spaces, Lecture Notes in Mathematics 364, pp. 13–40, Springer-Verlag, Berlin-Heidelberg-New York, 1974.

    Google Scholar 

  7. H. Karzel, Inzidenzgruppen I, lecture notes by I. Pieper and K. Sörensen, Univ. Hamburg 1965, pp. 123-135.

  8. W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z 183 (1983) 503–529.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Kreuzer and H. Wefelscheid, On K-loops of finite order, Res. Math., 25 (1994) 79–102.

    MathSciNet  MATH  Google Scholar 

  10. O. Loos, Spiegelungsräume und homogene symmetrische Räume, Math. Z. 99, (1967) 141–170.

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Loos, Bounded symmetric domains and Jordan pairs, University of California, Irvine, 1977.

  12. P.O. Miheev and L.V. Sabinin, Quasigroups and differential geometry, in Quasigroups and Loops: Theory and Applications edited by O. Chein, H.O. Pflugfelder, J.D.H. Smith, Sigma Series in Pure Mathematics, Vol. 8, Helbermann Verlag Berlin, 1990.

  13. W. Rudin, Function Theory in the Unit Ball of ℂn, Springer-Verlag, New York, 1980.

    Book  Google Scholar 

  14. R. Sexl and H.K. Urbantke, Relativität, Gruppen, Teilchen, Springer, New York, 1992.

    Google Scholar 

  15. J. Tits, Généralisation des groupes projectifs, Acad. Roy. Belg. Cl. Sci. Mém. Coll. 5e Ser. 35 (1949) 197–208, 224-233, 568-589, 756-773.

    MathSciNet  MATH  Google Scholar 

  16. A.A. Ungar, Weakly associative groups, Res. Math., 17 (1990) 149–168.

    MathSciNet  MATH  Google Scholar 

  17. A.A. Ungar, Thomas precession and its associated grouplike structure, Amer. J. Phys., 59 (1991) 824–834.

    Article  MathSciNet  Google Scholar 

  18. A.A. Ungar, Quasidirect product groups and the Lorentz transformation group, in T.M. Rassias (ed.), Constantin Caratheodory: An International Tribute, Vol. II, pp. 1378-1392, World Sci. Pub. NJ, 1991.

  19. A.A. Ungar, The abstract Lorentz transformation group, Amer. J. Phys., 60 (1992) 815–828.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.A. Ungar, The abstract complex Lorentz transformation group with real metric I: Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hubert space, J. Math. Phys., 35 (1994) 1408–1425.

    Article  MathSciNet  MATH  Google Scholar 

  21. A.A. Ungar, Erratum: “The abstract complex Lorentz transformation group with real metric I: Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space”, J. Math. Phys., 35 (1994) in print.

  22. A.A. Ungar, The abstract complex Lorentz transformation group with real metric II: The invariance group of the form ¦t¦2- ∥x∥2, J. Math. Phys. 35 (1994) 1881–1913.

    Article  MathSciNet  MATH  Google Scholar 

  23. A.A. Ungar, Gyrogroups and groups of holomorphic automorphisms of the complex disk, Aequat. Math., 47 (1994) 240–254.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras, North Holland Math. Studies, Vol. 104, 1985.

  25. H. Upmeier, Jordan algebras in analysis, operator theory and quantum mechanics, CBMS-NSF Regional Conference series in Math. Amer. Math. Soc., Providence R.I., No. 67, 1987.

  26. R. Vassar, J.V. Breakwell, C.W.F. Everitt and R.A. VanPatten, Orbit selection for the Stanford relativity gyroscope experiment, J. Spacecraft and Rockets, 19 (1986) 66–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, Y., Ungar, A.A. Gyrosemidirect Product Structure of Bounded Symmetric Domains. Results. Math. 26, 28–38 (1994). https://doi.org/10.1007/BF03322286

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322286

Keywords

Navigation